Verma Preeti, Ho Ruoya, Chambers Schuyler A, Cegelski Lynette, Zimmer Jochen
Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA.
Department of Chemistry, Stanford University, Stanford, CA 94305, United States.
bioRxiv. 2024 Apr 8:2024.04.04.588173. doi: 10.1101/2024.04.04.588173.
Phosphoethanolamine (pEtN) cellulose is a naturally occurring modified cellulose produced by several Enterobacteriaceae. The minimal components of the cellulose synthase complex include the catalytically active BcsA enzyme, an associated periplasmic semicircle of hexameric BcsB, as well as the outer membrane (OM)-integrated BcsC subunit containing periplasmic tetratricopeptide repeats (TPR). Additional subunits include BcsG, a membrane-anchored periplasmic pEtN transferase associated with BcsA, and BcsZ, a conserved periplasmic cellulase of unknown biological function. While events underlying the synthesis and translocation of cellulose by BcsA are well described, little is known about its pEtN modification and translocation across the cell envelope. We show that the N-terminal cytosolic domain of BcsA positions three copies of BcsG near the nascent cellulose polymer. Further, the terminal subunit of the BcsB semicircle tethers the N-terminus of a single BcsC protein to establish a trans-envelope secretion system. BcsC's TPR motifs bind a putative cello-oligosaccharide near the entrance to its OM pore. Additionally, we show that only the hydrolytic activity of BcsZ but not the subunit itself is necessary for cellulose secretion, suggesting a secretion mechanism based on enzymatic removal of mislocalized cellulose. Lastly, we introduce pEtN modification of cellulose in orthogonal cellulose biosynthetic systems by protein engineering.
磷酸乙醇胺(pEtN)纤维素是由几种肠杆菌科细菌产生的天然存在的改性纤维素。纤维素合酶复合体的最小组成部分包括具有催化活性的BcsA酶、与之相关的六聚体BcsB的周质半圆,以及含有周质四肽重复序列(TPR)的外膜(OM)整合BcsC亚基。其他亚基包括BcsG,一种与BcsA相关的膜锚定周质pEtN转移酶,以及BcsZ,一种生物学功能未知的保守周质纤维素酶。虽然关于BcsA合成和转运纤维素的潜在机制已有充分描述,但对于其pEtN修饰以及跨细胞膜转运的了解却很少。我们发现,BcsA的N端胞质结构域将三个BcsG拷贝定位在新生纤维素聚合物附近。此外,BcsB半圆的末端亚基将单个BcsC蛋白的N端连接起来,以建立一个跨膜分泌系统。BcsC的TPR基序在其OM孔入口附近结合一种假定的纤维寡糖。此外,我们还发现,纤维素分泌仅需要BcsZ的水解活性,而不需要该亚基本身,这表明存在一种基于酶促去除错误定位纤维素的分泌机制。最后,我们通过蛋白质工程在正交纤维素生物合成系统中引入了纤维素的pEtN修饰。