Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA.
Department of Chemistry, Stanford University, Stanford, CA, USA.
Nat Commun. 2024 Sep 6;15(1):7798. doi: 10.1038/s41467-024-51838-0.
Phosphoethanolamine (pEtN) cellulose is a naturally occurring modified cellulose produced by several Enterobacteriaceae. The minimal components of the E. coli cellulose synthase complex include the catalytically active BcsA enzyme, a hexameric semicircle of the periplasmic BcsB protein, and the outer membrane (OM)-integrated BcsC subunit containing periplasmic tetratricopeptide repeats (TPR). Additional subunits include BcsG, a membrane-anchored periplasmic pEtN transferase associated with BcsA, and BcsZ, a periplasmic cellulase of unknown biological function. While cellulose synthesis and translocation by BcsA are well described, little is known about its pEtN modification and translocation across the cell envelope. We show that the N-terminal cytosolic domain of BcsA positions three BcsG copies near the nascent cellulose polymer. Further, the semicircle's terminal BcsB subunit tethers the N-terminus of a single BcsC protein in a trans-envelope secretion system. BcsC's TPR motifs bind a putative cello-oligosaccharide near the entrance to its OM pore. Additionally, we show that only the hydrolytic activity of BcsZ but not the subunit itself is necessary for cellulose secretion, suggesting a secretion mechanism based on enzymatic removal of translocation incompetent cellulose. Lastly, protein engineering introduces cellulose pEtN modification in orthogonal cellulose biosynthetic systems. These findings advance our understanding of pEtN cellulose modification and secretion.
磷酸乙醇胺(pEtN)纤维素是一种天然存在的改性纤维素,由几种肠杆菌科产生。大肠杆菌纤维素合酶复合物的最小组成部分包括催化活性的 BcsA 酶、六聚体的周质 BcsB 蛋白半圆和含有周质四肽重复(TPR)的外膜(OM)整合 BcsC 亚基。其他亚基包括与 BcsA 相关的膜锚定周质 pEtN 转移酶 BcsG 和未知生物学功能的周质纤维素酶 BcsZ。虽然 BcsA 的纤维素合成和转运过程描述得很好,但对其 pEtN 修饰和穿过细胞包膜的转运知之甚少。我们表明,BcsA 的 N 端胞质域将三个 BcsG 拷贝定位在新生纤维素聚合物附近。此外,半圆的末端 BcsB 亚基将单个 BcsC 蛋白的 N 端系在跨膜分泌系统中。BcsC 的 TPR 基序结合 OM 孔入口附近的假定纤维寡糖。此外,我们还表明,只有 BcsZ 的水解活性而不是亚基本身对于纤维素分泌是必需的,这表明基于酶去除转运不合格纤维素的分泌机制。最后,蛋白质工程在正交纤维素生物合成系统中引入了纤维素 pEtN 修饰。这些发现推进了我们对 pEtN 纤维素修饰和分泌的理解。