Qi Zhen, Noetscher Gregory M, Miles Alton, Weise Konstantin, Knösche Thomas R, Cadman Cameron R, Potashinsky Alina R, Liu Kelu, Wartman William A, Nunez Ponasso Guillermo, Bikson Marom, Lu Hanbing, Deng Zhi-De, Nummenmaa Aapo R, Makaroff Sergey N
bioRxiv. 2024 Nov 30:2024.04.04.588004. doi: 10.1101/2024.04.04.588004.
Modeling brain stimulation at the microscopic scale may reveal new paradigms for various stimulation modalities. We present the largest map to date of extracellular electric field distributions within a layer L2/L3 mouse primary visual cortex brain sample. This was enabled by the automated analysis of serial section electron microscopy images with improved handling of image defects, covering a volume of 250 × 140 × 90 μm . The map was obtained by applying a uniform brain stimulation electric field at three different polarizations and accurately computing microscopic field perturbations using the boundary element fast multipole method. We used the map to identify the effect of microscopic field perturbations on the activation thresholds of individual neurons. Previous relevant studies modeled a macroscopically homogeneous cortical volume. Our result shows that the microscopic field perturbations - an 'electric field spatial noise' with a mean value of zero - only modestly influence the macroscopically predicted stimulation field strengths necessary for neuronal activation. The thresholds do not change by more than 10% on average. Under the stated limitations and assumptions of our method, this result justifies the conventional theory of "invisible" neurons embedded in a macroscopic brain model for transcranial magnetic and transcranial electrical stimulation. However, our result is solely sample-specific and largely neglects the effect of the microcapillary network. Furthermore, we only considered the uniform impressed field and a single- pulse stimulation time course.
This study is arguably the first attempt to model brain stimulation at the microscopic scale, enabled by automated analysis of modern scanning electron microscopy images of the brain. It concentrates on modeling microscopic perturbations of the extracellular electric field caused by the physical cell structure and is applicable to any type of brain stimulation.
Post-processed cell CAD models (383, stl format), microcapillary CAD models (34, stl format), post-processed neuron morphologies (267, swc format), extracellular electric field and potential distributions at different polarizations (267x3, MATLAB format), *.ses projects files for biophysical modeling with Neuron software (267x2, Neuron format), and computed neuron activating thresholds at different conditions (267x8, Excel tables, without the sample polarization correction from Section 2.8) are made available online through , a volumetric open-source database for 3D and 4D neuroscience data.
在微观尺度上对脑刺激进行建模可能会揭示各种刺激方式的新范式。我们展示了迄今为止最大的小鼠初级视觉皮层L2/L3层脑样本细胞外电场分布图。这是通过对连续切片电子显微镜图像进行自动分析实现的,该分析改进了对图像缺陷的处理,覆盖的体积为250×140×90μm。该图是通过在三种不同极化方向施加均匀的脑刺激电场,并使用边界元快速多极子方法精确计算微观场扰动而获得的。我们利用该图确定微观场扰动对单个神经元激活阈值的影响。先前的相关研究对宏观上均匀的皮质体积进行了建模。我们的结果表明,微观场扰动——一种平均值为零的“电场空间噪声”——仅对神经元激活所需的宏观预测刺激场强产生适度影响。阈值平均变化不超过10%。在我们方法的既定局限性和假设下,这一结果证明了传统理论中关于嵌入宏观脑模型用于经颅磁刺激和经颅电刺激的“不可见”神经元的合理性。然而,我们的结果仅针对特定样本,并且在很大程度上忽略了微毛细血管网络的影响。此外,我们仅考虑了均匀外加场和单脉冲刺激时间过程。
本研究可以说是首次尝试在微观尺度上对脑刺激进行建模,这是通过对现代脑扫描电子显微镜图像进行自动分析实现的。它专注于对由物理细胞结构引起的细胞外电场微观扰动进行建模,并且适用于任何类型的脑刺激。
经过后处理的细胞CAD模型(383个,stl格式)、微毛细血管CAD模型(34个,stl格式)、经过后处理的神经元形态(267个,swc格式)、不同极化方向的细胞外电场和电位分布(267×3,MATLAB格式)、用于使用Neuron软件进行生物物理建模的*.ses项目文件(267×2,Neuron格式)以及在不同条件下计算的神经元激活阈值(267×8,Excel表格,未进行第2.8节中的样本极化校正)可通过一个用于3D和4D神经科学数据的体积开源数据库在线获取。