Kayrouz Chase M, Ireland Kendra A, Ying Vanessa, Davis Katherine M, Seyedsayamdost Mohammad R
Department of Chemistry, Princeton University, Princeton, NJ 08544, United States.
Department of Chemistry, Emory University, Atlanta, GA 30322, United States.
bioRxiv. 2024 Apr 10:2024.04.10.588772. doi: 10.1101/2024.04.10.588772.
Selenium is an essential micronutrient, but its presence in biology has been limited to protein and nucleic acid biopolymers. The recent identification of the first biosynthetic pathway for selenium-containing small molecules suggests that there is a larger family of selenometabolites that remains to be discovered. Using a bioinformatic search strategy that relies on mapping of composite active site motifs, we identify a recently evolved branch of abundant and uncharacterized metalloenzymes that we predict are involved in selenometabolite biosynthesis. Biochemical studies confirm this prediction and show that these enzymes form an unusual C-Se bond onto histidine, thus giving rise to a novel selenometabolite and potent antioxidant that we have termed ovoselenol. Aside from providing insights into the evolution of this enzyme class and the structural basis of C-Se bond formation, our work offers a blueprint for charting the microbial selenometabolome in the future.
硒是一种必需的微量营养素,但其在生物学中的存在一直局限于蛋白质和核酸生物聚合物。最近首次发现了含硒小分子的生物合成途径,这表明仍有一个更大的硒代谢产物家族有待发现。利用一种依赖于复合活性位点基序映射的生物信息学搜索策略,我们鉴定出了一个最近进化的丰富且未被表征的金属酶分支,我们预测这些金属酶参与硒代谢产物的生物合成。生化研究证实了这一预测,并表明这些酶在组氨酸上形成了一种不寻常的C-Se键,从而产生了一种新的硒代谢产物和强效抗氧化剂,我们将其命名为卵硒醇。除了深入了解这类酶的进化以及C-Se键形成的结构基础外,我们的工作还为未来绘制微生物硒代谢组提供了蓝图。