Suppr超能文献

高通量聚焦离子束铣削技术实现的微尺度电池颗粒的原子尺度表征

Atomic-Scale Characterization of Microscale Battery Particles Enabled by a High-Throughput Focused Ion Beam Milling Technique.

作者信息

Pauls Alexi L, Radford Melissa J, Taylor Audrey K, Gates Byron D

机构信息

Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada.

出版信息

ACS Omega. 2024 Apr 6;9(15):17467-17480. doi: 10.1021/acsomega.4c00318. eCollection 2024 Apr 16.

Abstract

The cathode materials in lithium-ion batteries (LIBs) require improvements to address issues such as surface degradation, short-circuiting, and the formation of dendrites. One such method for addressing these issues is using surface coatings. Coatings can be sought to improve the durability of cathode materials, but the characterization of the uniformity and stability of the coating is important to assess the performance and lifetime of these materials. For microscale particles, there are, however, challenges associated with characterizing their surface modifications by transmission electron microscopy (TEM) techniques due to the size of these particles. Often, techniques such as focused ion beam (FIB)-assisted lift-out can be used to prepare thin cross sections to enable TEM analysis, but these techniques are very time-consuming and have a relatively low throughput. The work outlined herein demonstrates a FIB technique with direct support of microscale cathode materials on a TEM grid that increases sample throughput and reduces the processing time by 60-80% (i.e., from >5 to ∼1.5 h). The demonstrated workflow incorporates an air-liquid particle assembly followed by direct particle transfer to a TEM grid, FIB milling, and subsequent TEM analysis, which was illustrated with lithium nickel cobalt aluminum oxide particles and lithium manganese nickel oxide particles. These TEM analyses included mapping the elemental composition of cross sections of the microscale particles using energy-dispersive X-ray spectroscopy. The methods developed in this study can be extended to high-throughput characterization of additional LIB cathode materials (e.g., new compositions, coating, end-of-life studies), as well as to other microparticles and their coatings as prepared for a variety of applications.

摘要

锂离子电池(LIBs)中的阴极材料需要改进,以解决诸如表面降解、短路和枝晶形成等问题。解决这些问题的一种方法是使用表面涂层。可以寻求涂层来提高阴极材料的耐久性,但涂层的均匀性和稳定性的表征对于评估这些材料的性能和寿命很重要。然而,对于微米级颗粒,由于这些颗粒的尺寸,通过透射电子显微镜(TEM)技术表征其表面改性存在挑战。通常,可以使用诸如聚焦离子束(FIB)辅助剥离等技术来制备薄的横截面以进行TEM分析,但这些技术非常耗时且通量相对较低。本文概述的工作展示了一种FIB技术,该技术可直接在TEM网格上支撑微米级阴极材料,从而提高样品通量并将处理时间减少60 - 80%(即从>5小时减少到约1.5小时)。所展示的工作流程包括气液颗粒组装,然后将颗粒直接转移到TEM网格上,进行FIB铣削以及随后的TEM分析,以锂镍钴铝氧化物颗粒和锂锰镍氧化物颗粒为例进行了说明。这些TEM分析包括使用能量色散X射线光谱法绘制微米级颗粒横截面的元素组成图。本研究中开发的方法可以扩展到对其他LIB阴极材料(例如新成分、涂层、寿命末期研究)的高通量表征,以及扩展到为各种应用制备的其他微粒及其涂层。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1f1/11025079/adf82af428a8/ao4c00318_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验