Huang Chengxiang, Jiang Zhou, Liu Fuxi, Li Wenwen, Liang Qing, Zhao Zhenzhen, Ge Xin, Song Kexin, Zheng Lirong, Zhou Xinyan, Qiao Sifan, Zhang Wei, Zheng Weitao
Key Laboratory of Automobile Materials MOE, and School of Materials Science & Engineering, and Electron Microscopy Center, and International Center of Future Science, and Jilin Provincial International Cooperation Key Laboratory of High Efficiency Clean Energy Materials, Jilin University, Changchun, Jilin, 130012, China.
Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
Angew Chem Int Ed Engl. 2024 Jun 21;63(26):e202405592. doi: 10.1002/anie.202405592. Epub 2024 May 28.
In aqueous aluminum-ion batteries (AAIBs), the insertion/extraction chemistry of Al often leads to poor kinetics, whereas the rapid diffusion kinetics of hydronium ions (HO) may offer the solution. However, the presence of considerable Al in the electrolyte hinders the insertion reaction of HO. Herein, we report how oxygen-deficient α-MoO nanosheets unlock selective HO insertion in a mild aluminum-ion electrolyte. The abundant oxygen defects impede the insertion of Al due to excessively strong adsorption, while allowing HO to be inserted/diffused through the Grotthuss proton conduction mechanism. This research advances our understanding of the mechanism behind selective HO insertion in mild electrolytes.
在水系铝离子电池(AAIBs)中,铝的嵌入/脱出化学过程常常导致动力学性能不佳,而水合氢离子(H₃O⁺)的快速扩散动力学或许能提供解决方案。然而,电解质中大量铝的存在阻碍了H₃O⁺的嵌入反应。在此,我们报道了缺氧的α-MoO₃纳米片如何在温和的铝离子电解质中实现选择性H₃O⁺嵌入。大量的氧缺陷由于吸附过强而阻碍了铝的嵌入,同时允许H₃O⁺通过Grotthuss质子传导机制进行嵌入/扩散。这项研究增进了我们对温和电解质中选择性H₃O⁺嵌入背后机制的理解。