Zhang Haozhe, Wu Weixing, Liu Qiyu, Yang Fan, Shi Xin, Liu Xiaoqing, Yu Minghao, Lu Xihong
MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China.
Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, 01062, Germany.
Angew Chem Int Ed Engl. 2021 Jan 11;60(2):896-903. doi: 10.1002/anie.202010073. Epub 2020 Nov 9.
Among various charge-carrier ions for aqueous batteries, non-metal hydronium (H O ) with small ionic size and fast diffusion kinetics empowers H O -intercalation electrodes with high rate performance and fast-charging capability. However, pure H O charge carriers for inorganic electrode materials have only been observed in corrosive acidic electrolytes, rather than in mild neutral electrolytes. Herein, we report how selective H O intercalation in a neutral ZnCl electrolyte can be achieved for water-proton co-intercalated α-MoO (denoted WP-MoO ). H O molecules located between MoO interlayers block Zn intercalation pathways while allowing smooth H O intercalation/diffusion through a Grotthuss proton-conduction mechanism. Compared to α-MoO with a Zn -intercalation mechanism, WP-MoO delivers the substantially enhanced specific capacity (356.8 vs. 184.0 mA h g ), rate capability (77.5 % vs. 42.2 % from 0.4 to 4.8 A g ), and cycling stability (83 % vs. 13 % over 1000 cycles). This work demonstrates the possibility of modulating electrochemical intercalating ions by interlayer engineering, to construct high-rate and long-life electrodes for aqueous batteries.
在水系电池的各种载流子离子中,具有小离子尺寸和快速扩散动力学的非金属水合氢离子(H₃O⁺)赋予了H₃O⁺嵌入电极高倍率性能和快速充电能力。然而,无机电极材料的纯H₃O⁺载流子仅在腐蚀性酸性电解质中被观察到,而不是在温和的中性电解质中。在此,我们报告了如何在中性ZnCl₂电解质中实现水-质子共嵌入的α-MoO₃(表示为WP-MoO₃)的选择性H₃O⁺嵌入。位于MoO₃层间的H₃O⁺分子阻止了Zn的嵌入路径,同时通过Grotthuss质子传导机制允许H₃O⁺顺利嵌入/扩散。与具有Zn²⁺嵌入机制的α-MoO₃相比,WP-MoO₃具有显著提高的比容量(356.8对184.0 mA h g⁻¹)、倍率性能(从0.4到4.8 A g⁻¹时为77.5%对42.2%)和循环稳定性(1000次循环后为83%对13%)。这项工作证明了通过层间工程调节电化学嵌入离子以构建水系电池的高倍率和长寿命电极的可能性。