Suppr超能文献

Tetracyanonickelate probes the active site of sulfur-free rhodanese.

作者信息

Chow S F, Horowitz P M

出版信息

J Biol Chem. 1985 Dec 15;260(29):15516-21.

PMID:3864780
Abstract

Tetracyanonickelate (Ni(CN)4(2-)) was used as a probe for the active site of sulfur-free rhodanese (E) in physical and kinetic studies. Ni(CN)4(2-) quenches the intrinsic fluorescence as well as the fluorescence of enzyme-bound 2-anilinonaphthalene-8-sulfonic acid (2,8-ANS), an inhibitor that is competitive with respect to thiosulfate. A facile binding method based on centrifugation was developed to study Ni(CN)4(2-) binding to E. Binding studies performed using either of the electrophoretic variants A and B, fractionated by DE52 column chromatography, showed one high affinity Ni(CN)4(2-)-binding site in each species and additional weak sites on the more electropositive form A. The high affinity Ni(CN)4(2-) binding was corroborated by ultrafiltration binding (Kd = 3.95 +/- 0.35 microM), titration of intrinsic fluorescence (Kd = 1.8 +/- 0.11 microM), and displacement of enzyme-bound 2,8-ANS (Kd = 1.9 +/- 1.1 microM). A nonlinear least squares analysis of kinetic data collected under conditions used for the binding studies gave a Ni(CN)4(2-) inhibition constant of 21 microM. It is concluded that Ni(CN)4(2-) binds to sulfur-free rhodanese in solution near the active site as has been shown in x-ray crystal studies (Lijk, L. J., Kalk, K. H., Brandenburger, N. P., and Hol, W. G. J. (1983) Biochemistry 22, 2952-2957). In keeping with recent suggestions that the conformational state of the enzyme is dynamically determined, the discrepancy between Ni(CN)4(2-) affinity as determined by physical methods and that by kinetic methods suggests that Ni(CN)4(2-) may be able to distinguish the conformation of the working enzyme from those of the idle forms.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验