Laboratory of Ecological Immunology of Aquatic Organisms, Moscow Representative Office A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky Ave 38, Moscow, Russia, 119991.
Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Toreza, 44, St-Petersburg, Russia, 194223.
Fish Physiol Biochem. 2024 Aug;50(4):1341-1352. doi: 10.1007/s10695-024-01342-5. Epub 2024 Apr 22.
Semi-anadromous animals experience salinity fluctuations during their life-span period. Alterations of environmental conditions induce stress response where catecholamines (CA) play a central role. Physiological stress and changes in external and internal osmolarity are frequently associated with increased production of reactive oxygen species (ROS). In this work, we studied the involvement of the cAMP/PKA pathway in mediating catecholamine-dependent effects on osmoregulatory responses, intracellular production of ROS, and mitochondrial membrane potential of the river lamprey (Lampetra fluviatilis, Linnaeus, 1758) red blood cells (RBCs). We also investigated the role of hypoosmotic shock in the process of ROS production and mitochondrial respiration of RBCs. For this, osmotic stability and the dynamics of the regulatory volume decrease (RVD) following hypoosmotic swelling, intracellular ROS levels, and changes in mitochondrial membrane potential were assessed in RBCs treated with epinephrine (Epi, 25 μM) and forskolin (Forsk, 20 μM). Epi and Forsk markedly reduced the osmotic stability of the lamprey RBCs whereas did not affect the dynamics of the RVD response in a hypoosmotic environment. Activation of PKA with Epi and Forsk increased ROS levels and decreased mitochondrial membrane potential of the lamprey RBCs. In contrast, upon hypoosmotic shock enhanced ROS production in RBCs was accompanied by increased mitochondrial membrane potential. Overall, a decrease in RBC osmotic stability and the enhancement of ROS formation induced by β-adrenergic stimulation raises concerns about stress-associated changes in RBC functions in agnathans. Increased ROS production in RBCs under hypoosmotic shock indicates that a decrease in blood osmolarity may be associated with oxidative damage of RBCs during lamprey migration.
半洄游动物在其生命周期中会经历盐度波动。环境条件的改变会引起应激反应,儿茶酚胺(CA)在此过程中起着核心作用。生理应激以及外部和内部渗透压的变化通常与活性氧(ROS)的产生增加有关。在这项工作中,我们研究了 cAMP/PKA 途径在介导儿茶酚胺依赖性对渗透压反应、细胞内 ROS 产生和河流七鳃鳗(Lampetra fluviatilis,Linnaeus,1758)红细胞(RBC)线粒体膜电位的影响中的作用。我们还研究了低渗冲击在 RBC 中 ROS 产生和线粒体呼吸过程中的作用。为此,我们评估了用肾上腺素(Epi,25 μM)和 forskolin(Forsk,20 μM)处理后的 RBC 的渗透压稳定性和低渗肿胀后的调节体积减少(RVD)动力学、细胞内 ROS 水平以及线粒体膜电位的变化。Epi 和 Forsk 显著降低了七鳃鳗 RBC 的渗透压稳定性,而对低渗环境中的 RVD 反应动力学没有影响。用 Epi 和 Forsk 激活 PKA 增加了七鳃鳗 RBC 的 ROS 水平并降低了线粒体膜电位。相比之下,低渗冲击增强了 RBC 中的 ROS 产生,同时增加了线粒体膜电位。总体而言,β-肾上腺素能刺激引起的 RBC 渗透压稳定性降低和 ROS 形成增加引起了人们对无颌类 RBC 功能与应激相关变化的关注。低渗冲击下 RBC 中 ROS 产生的增加表明,在七鳃鳗洄游期间,血液渗透压的降低可能与 RBC 的氧化损伤有关。