Yang Xinlong, Xie Xiaoyang, Yang Wenqi, Wang Xiaohui, Li Menglei, Zheng Fawei
Center for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, People's Republic of China.
Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, People's Republic of China.
Nanotechnology. 2024 May 10;35(30). doi: 10.1088/1361-6528/ad4156.
Recently, CrSe, a new ferromagnetic van der Waals two-dimensional material, was discovered to be highly stable under ambient conditions, making it an attractive candidate for fundamental research and potential device applications. Here, we study the interlayer interactions of bilayer CrSeusing first-principles calculations. We demonstrate that the interlayer interaction depends on the stacking structure. The AA and AB stackings exhibit antiferromagnetic (AFM) interlayer interactions, while the AC stacking exhibits ferromagnetic (FM) interlayer interaction. Furthermore, the interlayer interaction can be further tuned by tensile strain and charge doping. Specifically, under large tensile strain, most stacking structures exhibit FM interlayer interactions. Conversely, under heavy electron doping, all stacking structures exhibit AFM interlayer interactions. These findings are useful for designing spintronic devices based on CrSe.
最近,人们发现一种新型铁磁范德华二维材料CrSe在环境条件下具有高度稳定性,这使其成为基础研究和潜在器件应用的有吸引力的候选材料。在此,我们使用第一性原理计算研究双层CrSe的层间相互作用。我们证明层间相互作用取决于堆叠结构。AA和AB堆叠表现出反铁磁(AFM)层间相互作用,而AC堆叠表现出铁磁(FM)层间相互作用。此外,层间相互作用可以通过拉伸应变和电荷掺杂进一步调节。具体而言,在大拉伸应变下,大多数堆叠结构表现出FM层间相互作用。相反,在重电子掺杂下,所有堆叠结构都表现出AFM层间相互作用。这些发现对于基于CrSe设计自旋电子器件很有用。