Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.
School of Medicine and Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
Acta Cytol. 2024;68(4):342-350. doi: 10.1159/000538985. Epub 2024 Apr 22.
Digitizing cytology slides presents challenges because of their three-dimensional features and uneven cell distribution. While multi-Z-plane scan is a prevalent solution, its adoption in clinical digital cytopathology is hindered by prolonged scanning times, increased image file sizes, and the requirement for cytopathologists to review multiple Z-plane images.
This study presents heuristic scan as a novel solution, using an artificial intelligence (AI)-based approach specifically designed for cytology slide scanning as an alternative to the multi-Z-plane scan. Both the 21 Z-plane scan and the heuristic scan simulation methods were used on 52 urine cytology slides from three distinct cytopreparations (Cytospin, ThinPrep, and BD CytoRich™ [SurePath]), generating whole-slide images (WSIs) via the Leica Aperio AT2 digital scanner. The AI algorithm inferred the WSI from 21 Z-planes to quantitate the total number of suspicious for high-grade urothelial carcinoma or more severe cells (SHGUC+) cells. The heuristic scan simulation calculated the total number of SHGUC+ cells from the 21 Z-plane scan data. Performance metrics including SHGUC+ cell coverage rates (calculated by dividing the number of SHGUC+ cells identified in multiple Z-planes or heuristic scan simulation by the total SHGUC+ cells in the 21 Z-planes for each WSI), scanning time, and file size were analyzed to compare the performance of each scanning method. The heuristic scan's metrics were linearly estimated from the 21 Z-plane scan data. Additionally, AI-aided interpretations of WSIs with scant SHGUC+ cells followed The Paris System guidelines and were compared with original diagnoses.
The heuristic scan achieved median SHGUC+ cell coverage rates similar to 5 Z-plane scans across three cytopreparations (0.78-0.91 vs. 0.75-0.88, p = 0.451-0.578). Notably, it substantially reduced both scanning time (137.2-635.0 s vs. 332.6-1,278.8 s, p < 0.05) and image file size (0.51-2.10 GB vs. 1.16-3.10 GB, p < 0.05). Importantly, the heuristic scan yielded higher rates of accurate AI-aided interpretations compared to the single Z-plane scan (62.5% vs. 37.5%).
We demonstrated that the heuristic scan offers a cost-effective alternative to the conventional multi-Z-plane scan in digital cytopathology. It achieves comparable SHGUC+ cell capture rates while reducing both scanning time and image file size, promising to aid digital urine cytology interpretations with a higher accuracy rate compared to the conventional single (optimal) plane scan. Further studies are needed to assess the integration of this new technology into compatible digital scanners for practical cytology slide scanning.
数字化细胞学幻灯片具有三维特征和不均匀的细胞分布,因此存在挑战。虽然多 Z 平面扫描是一种常见的解决方案,但由于扫描时间延长、图像文件大小增加以及细胞学专家需要查看多个 Z 平面图像,因此其在临床数字细胞病理学中的应用受到阻碍。
本研究提出启发式扫描作为一种新的解决方案,使用基于人工智能(AI)的方法专门设计用于细胞学幻灯片扫描,作为多 Z 平面扫描的替代方法。对来自三个不同细胞学标本(Cytospin、ThinPrep 和 BD CytoRich™[SurePath])的 52 张尿细胞学幻灯片同时使用 21 个 Z 平面扫描和启发式扫描模拟方法,通过 Leica Aperio AT2 数字扫描仪生成全幻灯片图像(WSI)。AI 算法从 21 个 Z 平面推断出 WSI,以定量计算总可疑高级尿路上皮癌或更严重细胞(SHGUC+)细胞数量。启发式扫描模拟根据 21 个 Z 平面扫描数据计算 SHGUC+细胞总数。分析性能指标,包括 SHGUC+细胞覆盖率(通过将多个 Z 平面或启发式扫描模拟中识别的 SHGUC+细胞数量除以每个 WSI 的 21 个 Z 平面中的总 SHGUC+细胞数量计算)、扫描时间和文件大小,以比较每种扫描方法的性能。从 21 个 Z 平面扫描数据线性估计启发式扫描的指标。此外,根据 AI 辅助解读 WSIs 遵循巴黎系统指南,并与原始诊断进行比较。
启发式扫描在三个细胞学标本中达到了与 5 个 Z 平面扫描相似的 SHGUC+细胞覆盖率(0.78-0.91 与 0.75-0.88,p=0.451-0.578)。值得注意的是,它大大减少了扫描时间(137.2-635.0 秒与 332.6-1278.8 秒,p <0.05)和图像文件大小(0.51-2.10GB 与 1.16-3.10GB,p <0.05)。重要的是,启发式扫描比单 Z 平面扫描产生更高比例的准确 AI 辅助解读(62.5% 与 37.5%)。
我们证明了启发式扫描在数字细胞病理学中提供了一种经济有效的替代传统多 Z 平面扫描的方法。它实现了相似的 SHGUC+细胞捕获率,同时减少了扫描时间和图像文件大小,有望比传统的单(最佳)平面扫描以更高的准确率辅助数字尿液细胞学解读。需要进一步的研究来评估这项新技术整合到兼容的数字扫描仪中用于实际的细胞学幻灯片扫描。