Suppr超能文献

德国莱茵河和米特兰运河温室气体浓度和通量空间变化的不同驱动因素。

Divergent drivers of the spatial variation in greenhouse gas concentrations and fluxes along the Rhine River and the Mittelland Canal in Germany.

机构信息

Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Kreuzeckbahnstrasse 19, 82467, Garmisch-Partenkirchen, Germany.

出版信息

Environ Sci Pollut Res Int. 2024 May;31(22):32183-32199. doi: 10.1007/s11356-024-33394-8. Epub 2024 Apr 22.

Abstract

Lotic ecosystems are sources of greenhouse gases (GHGs) to the atmosphere, but their emissions are uncertain due to longitudinal GHG heterogeneities associated with point source pollution from anthropogenic activities. In this study, we quantified summer concentrations and fluxes of carbon dioxide (CO), methane (CH), nitrous oxide (NO), and dinitrogen (N), as well as several water quality parameters along the Rhine River and the Mittelland Canal, two critical inland waterways in Germany. Our main objectives were to compare GHG concentrations and fluxes along the two ecosystems and to determine the main driving factors responsible for their longitudinal GHG heterogeneities. The results indicated that the two ecosystems were sources of GHG fluxes to the atmosphere, with the Mittelland Canal being a hotspot for CH and NO fluxes. We also found significant longitudinal GHG flux discontinuities along the mainstems of both ecosystems, which were mainly driven by divergent drivers. Along the Mittelland Canal, peak CO and CH fluxes coincided with point pollution sources such as a joining river tributary or the presence of harbors, while harbors and in-situ biogeochemical processes such as methanogenesis and respiration mainly explained CH and CO hotspots along the Rhine River. In contrast to CO and CH fluxes, NO longitudinal trends along the two lotic ecosystems were better predicted by in-situ parameters such as chlorophyll-a concentrations and N fluxes. Based on a positive relationship with N fluxes, we hypothesized that in-situ denitrification was driving NO hotspots in the Canal, while a negative relationship with N in the Rhine River suggested that coupled biological N fixation and nitrification accounted for NO hotspots. These findings stress the need to include N flux estimates in GHG studies, as it can potentially improve our understanding of whether nitrogen is fixed through N fixation or lost through denitrification.

摘要

河流生态系统是向大气排放温室气体 (GHG) 的源,但由于与人为活动的点源污染有关的纵向 GHG 不均匀性,其排放是不确定的。在这项研究中,我们量化了夏季莱茵河和米特兰运河(德国两条重要的内陆航道)沿程的二氧化碳 (CO)、甲烷 (CH)、氧化亚氮 (NO) 和氮气 (N) 的浓度和通量以及几个水质参数。我们的主要目标是比较两个生态系统的 GHG 浓度和通量,并确定导致其纵向 GHG 不均匀性的主要驱动因素。结果表明,这两个生态系统是向大气排放 GHG 的源,米特兰运河是 CH 和 NO 通量的热点。我们还发现,这两个生态系统的干流都存在显著的纵向 GHG 通量不连续性,这主要是由不同的驱动因素造成的。在米特兰运河,峰值 CO 和 CH 通量与点污染源如支流汇入或港口的存在相吻合,而港口和原地生物地球化学过程如甲烷生成和呼吸则主要解释了莱茵河的 CH 和 CO 热点。与 CO 和 CH 通量不同,NO 沿两个流水生态系统的纵向趋势可以更好地通过原位参数如叶绿素-a 浓度和 N 通量来预测。基于与 N 通量的正相关关系,我们假设原位反硝化是运河中 NO 热点的驱动力,而在莱茵河与 N 的负相关关系表明,生物固氮和硝化耦合过程解释了 NO 热点的形成。这些发现强调了在 GHG 研究中纳入 N 通量估计的必要性,因为这可能有助于我们更好地理解氮是通过固氮固定还是通过反硝化作用损失。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a6a/11512915/8cbffecf4923/11356_2024_33394_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验