Suppr超能文献

压缩感知光声投影成像系统的设计、实现与分析。

Design, implementation, and analysis of a compressed sensing photoacoustic projection imaging system.

机构信息

University of Innsbruck, Department of Mathematics, Innsbruck, Austria.

Research Center for Non Destructive Testing, Linz, Austria.

出版信息

J Biomed Opt. 2024 Jan;29(Suppl 1):S11529. doi: 10.1117/1.JBO.29.S1.S11529. Epub 2024 Apr 22.

Abstract

SIGNIFICANCE

Compressed sensing (CS) uses special measurement designs combined with powerful mathematical algorithms to reduce the amount of data to be collected while maintaining image quality. This is relevant to almost any imaging modality, and in this paper we focus on CS in photoacoustic projection imaging (PAPI) with integrating line detectors (ILDs).

AIM

Our previous research involved rather general CS measurements, where each ILD can contribute to any measurement. In the real world, however, the design of CS measurements is subject to practical constraints. In this research, we aim at a CS-PAPI system where each measurement involves only a subset of ILDs, and which can be implemented in a cost-effective manner.

APPROACH

We extend the existing PAPI with a self-developed CS unit. The system provides structured CS matrices for which the existing recovery theory cannot be applied directly. A random search strategy is applied to select the CS measurement matrix within this class for which we obtain exact sparse recovery.

RESULTS

We implement a CS PAPI system for a compression factor of 4:3, where specific measurements are made on separate groups of 16 ILDs. We algorithmically design optimal CS measurements that have proven sparse CS capabilities. Numerical experiments are used to support our results.

CONCLUSIONS

CS with proven sparse recovery capabilities can be integrated into PAPI, and numerical results support this setup. Future work will focus on applying it to experimental data and utilizing data-driven approaches to enhance the compression factor and generalize the signal class.

摘要

意义

压缩感知 (CS) 使用特殊的测量设计结合强大的数学算法,在保持图像质量的同时减少需要采集的数据量。这与几乎任何成像模式都相关,在本文中,我们专注于具有集成线探测器 (ILD) 的光声投影成像 (PAPI) 中的 CS。

目的

我们之前的研究涉及相当一般的 CS 测量,其中每个 ILD 都可以为任何测量做出贡献。然而,在现实世界中,CS 测量的设计受到实际限制。在这项研究中,我们的目标是一个 CS-PAPI 系统,其中每个测量仅涉及 ILD 的一个子集,并可以以具有成本效益的方式实现。

方法

我们用自行开发的 CS 单元扩展了现有的 PAPI。该系统为现有恢复理论无法直接应用的结构 CS 矩阵提供了支持。我们应用随机搜索策略来选择在这个类别中可以获得精确稀疏恢复的 CS 测量矩阵。

结果

我们实现了一个压缩比为 4:3 的 CS-PAPI 系统,其中在单独的 16 个 ILD 组上进行特定的测量。我们通过算法设计了具有证明稀疏 CS 能力的最佳 CS 测量。数值实验用于支持我们的结果。

结论

具有证明稀疏恢复能力的 CS 可以集成到 PAPI 中,并且数值结果支持这种设置。未来的工作将重点应用于实验数据,并利用数据驱动的方法来提高压缩比并推广信号类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0bb/11033734/a682662cbda6/JBO-029-S11529-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验