Shushkov Philip
Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
J Chem Phys. 2024 Apr 28;160(16). doi: 10.1063/5.0198519.
The interaction of electronic spin and molecular vibrations mediated by spin-orbit coupling governs spin relaxation in molecular qubits. We derive an extended molecular spin Hamiltonian that includes both adiabatic and non-adiabatic spin-dependent interactions, and we implement the computation of its matrix elements using state-of-the-art density functional theory. The new molecular spin Hamiltonian contains a novel spin-vibrational orbit interaction with a non-adiabatic origin, together with the traditional molecular Zeeman and zero-field splitting interactions with an adiabatic origin. The spin-vibrational orbit interaction represents a non-Abelian Berry curvature on the ground-state electronic manifold and corresponds to an effective magnetic field in the electronic spin dynamics. We further develop a spin relaxation rate model that estimates the spin relaxation time via the two-phonon Raman process. An application of the extended molecular spin Hamiltonian together with the spin relaxation rate model to Cu(II) porphyrin, a prototypical S = 1/2 molecular qubit, demonstrates that the spin relaxation time at elevated temperatures is dominated by the non-adiabatic spin-vibrational orbit interaction. The computed spin relaxation rate and its magnetic field orientation dependence are in excellent agreement with experimental measurements.
由自旋 - 轨道耦合介导的电子自旋与分子振动的相互作用控制着分子量子比特中的自旋弛豫。我们推导了一个扩展的分子自旋哈密顿量,它包括绝热和非绝热的自旋相关相互作用,并使用最先进的密度泛函理论实现其矩阵元的计算。新的分子自旋哈密顿量包含一个具有非绝热起源的新型自旋 - 振动轨道相互作用,以及具有绝热起源的传统分子塞曼和零场分裂相互作用。自旋 - 振动轨道相互作用在基态电子流形上表示一个非阿贝尔贝里曲率,并且在电子自旋动力学中对应于一个有效磁场。我们进一步开发了一个自旋弛豫速率模型,该模型通过双声子拉曼过程估计自旋弛豫时间。将扩展的分子自旋哈密顿量与自旋弛豫速率模型应用于典型的(S = 1/2)分子量子比特——铜(II)卟啉,结果表明高温下的自旋弛豫时间主要由非绝热自旋 - 振动轨道相互作用决定。计算得到的自旋弛豫速率及其对磁场方向的依赖性与实验测量结果高度吻合。