Suppr超能文献

潜在分子量子比特自旋动力学的结构效应

Structural Effects on the Spin Dynamics of Potential Molecular Qubits.

作者信息

Atzori Matteo, Benci Stefano, Morra Elena, Tesi Lorenzo, Chiesa Mario, Torre Renato, Sorace Lorenzo, Sessoli Roberta

机构信息

Dipartimento di Chimica "Ugo Schiff" & INSTM RU, Università degli Studi di Firenze , Via della Lastruccia 3, I50019 Sesto Fiorentino (Firenze), Italy.

European Lab. for Non-Linear Spectroscopy, Università degli Studi di Firenze , I50019 Sesto Fiorentino (Firenze), Italy.

出版信息

Inorg Chem. 2018 Jan 16;57(2):731-740. doi: 10.1021/acs.inorgchem.7b02616. Epub 2017 Dec 27.

Abstract

Control of spin-lattice magnetic relaxation is crucial to observe long quantum coherence in spin systems at reasonable temperatures. Such a control is most often extremely difficult to achieve, because of the coexistence of several relaxation mechanisms, that is direct, Raman, and Orbach. These are not always easy to relate to the energy states of the investigated system, because of the contribution to the relaxation of additional spin-phonon coupling phenomena mediated by intramolecular vibrations. In this work, we have investigated the effect of slight changes on the molecular structure of four vanadium(IV)-based potential spin qubits on their spin dynamics, studied by alternate current (AC) susceptometry. The analysis of the magnetic field dependence of the relaxation time correlates well with the low-energy vibrational modes experimentally detected by time-domain THz spectroscopy. This confirms and extends our preliminary observations on the role played by spin-vibration coupling in determining the fine structure of the spin-lattice relaxation time as a function of the magnetic field, for S = / potential spin qubits. This study represents a step forward in the use of low-energy vibrational spectroscopy as a prediction tool for the design of molecular spin qubits with long-lived quantum coherence. Indeed, quantum coherence times of ca. 4.0-6.0 μs in the 4-100 K range are observed for the best performing vanadyl derivatives identified through this multitechnique approach.

摘要

在合理温度下,控制自旋 - 晶格磁弛豫对于在自旋系统中观察长量子相干至关重要。由于存在多种弛豫机制,即直接弛豫、拉曼弛豫和奥尔巴赫弛豫,这种控制通常极难实现。由于分子内振动介导的额外自旋 - 声子耦合现象对弛豫有贡献,这些机制并不总是容易与所研究系统的能态相关联。在这项工作中,我们通过交流(AC)磁化率测量研究了四种基于钒(IV)的潜在自旋量子比特的分子结构的微小变化对其自旋动力学的影响。弛豫时间对磁场依赖性的分析与通过时域太赫兹光谱实验检测到的低能振动模式很好地相关。这证实并扩展了我们对自旋 - 振动耦合在确定自旋 - 晶格弛豫时间作为磁场函数的精细结构中所起作用的初步观察,对于(S = \frac{1}{2})的潜在自旋量子比特。这项研究代表了在将低能振动光谱用作具有长寿命量子相干的分子自旋量子比特设计的预测工具方面向前迈出的一步。事实上,通过这种多技术方法确定的性能最佳的钒氧基衍生物在4 - 100 K范围内观察到约4.0 - 6.0 μs的量子相干时间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验