Park Suehyun, McDaniel Jesse G
School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA.
J Chem Phys. 2024 Apr 28;160(16). doi: 10.1063/5.0194360.
In this work, we propose and validate a generalization of the Helmholtz model that can account for both "bell-shaped" and "camel-shaped" differential capacitance profiles of concentrated electrolytes, the latter being characteristic of ionic liquids. The generalization is based on introducing voltage dependence of both the dielectric constant "ϵr(V)" and thickness "L(V)" of the inner Helmholtz layer, as validated by molecular dynamics (MD) simulations. We utilize MD simulations to study the capacitance profiles of three different electrochemical interfaces: (1) graphite/[BMIm+][BF4-] ionic liquid interface; (2) Au(100)/[BMIm+][BF4-] ionic liquid interface; (3) Au(100)/1M [Na+][Cl-] aqueous interface. We compute the voltage dependence of ϵr(V) and L(V) and demonstrate that the generalized Helmholtz model qualitatively describes both camel-shaped and bell-shaped differential capacitance profiles of ionic liquids and concentrated aqueous electrolytes (in lieu of specific ion adsorption). In particular, the camel-shaped capacitance profile that is characteristic of ionic liquid electrolytes arises simply from combination of the voltage-dependent trends of ϵr(V) and L(V). Furthermore, explicit analysis of the inner layer charge density for both concentrated aqueous and ionic liquid double layers reveal similarities, with these charge distributions typically exhibiting a dipolar region closest to the electrode followed by a monopolar peak at larger distances. It is appealing that a generalized Helmholtz model can provide a unified description of the inner layer structure and capacitance profile for seemingly disparate aqueous and ionic liquid electrolytes.
在这项工作中,我们提出并验证了亥姆霍兹模型的一种推广形式,它能够解释浓电解质的“钟形”和“驼峰形”微分电容曲线,后者是离子液体的特征曲线。这种推广基于引入内亥姆霍兹层的介电常数“ϵr(V)”和厚度“L(V)”的电压依赖性,并通过分子动力学(MD)模拟进行了验证。我们利用MD模拟研究了三种不同电化学界面的电容曲线:(1)石墨/[BMIm +][BF4 -]离子液体界面;(2)Au(100)/[BMIm +][BF4 -]离子液体界面;(3)Au(100)/1M [Na +][Cl -]水界面。我们计算了ϵr(V)和L(V)的电压依赖性,并证明广义亥姆霍兹模型定性地描述了离子液体和浓水性电解质的驼峰形和钟形微分电容曲线(代替特定离子吸附)。特别是,离子液体电解质特有的驼峰形电容曲线仅仅源于ϵr(V)和L(V)的电压依赖性趋势的组合。此外,对浓水性和离子液体双层的内层电荷密度进行的明确分析揭示了相似之处,这些电荷分布通常在最靠近电极处呈现一个偶极区域,随后在较大距离处出现一个单极峰。令人感兴趣的是,一个广义亥姆霍兹模型能够为看似不同的水性和离子液体电解质的内层结构和电容曲线提供统一的描述。