Tu Yi-Jung, Peng Sheng-Ting
Department of Applied Chemistry, National Chi Nan University, Puli, Nantou, 54561, Taiwan.
Phys Chem Chem Phys. 2024 Feb 14;26(7):5932-5946. doi: 10.1039/d3cp05617a.
Ionic liquids have drawn great interest as electrolytes for energy storage applications in which they form characteristic electrical double layers at electrode interfaces. For ionic liquids at carbon electrode interfaces, their double layers are subject to nanoscale structuring of the electrode surface, involving altered ion structure and interactions that significantly influence the double layer capacitance. In this regard, we investigate the modulation of ionic liquid double layers by electrode surface roughness and the resulting effects on the ion structure, interaction, and capacitance. We performed fixed voltage molecular dynamics simulations to compute the differential capacitance profiles for the ionic liquids [BMIm][TFSI] and [BMIm][FSI] at model carbon electrode interfaces with the surface channel width at subnanometer and nanometer scales. We find that both [BMIm][TFSI] and [BMIm][FSI] exhibit enhanced differential capacitance for the electrode surface with a subnanometer channel width relative to the flat graphene surface, but the most pronounced enhancements for these two ionic liquids unexpectedly appear at different applied potential regimes. For [BMIm][TFSI], the nanostructured electrode shows significant enhancement of capacitance at high positive potential. For [BMIm][FSI], on the other hand, this enhancement is small at positive polarization but noticeable at low negative potential. We demonstrate that differences in these capacitance trends is due to differences in ion correlation that arise from a steric constraint of nanostructured electrode surface on the voltage-mediated restructuring of ions closest to the electrode interface. For example, the TFSI and FSI anions tend to structure with their charged and nonpolar groups in contact with the positive electrode surface when the constraint on these close-contact anions is relaxed. This anion structuring largely retains the cation association near the nanostructured electrode, resulting in only a slight increase in capacitance at positive polarization. Our simulations highlight the sensitive dependence of the innermost ion structure on the electrode surface nanostructure and applied voltage and the resulting influence on ion correlation and capacitance of ionic liquid double layers.
离子液体作为能量存储应用的电解质引起了极大的关注,在这些应用中,它们在电极界面形成特征性的双电层。对于碳电极界面处的离子液体,其双电层会受到电极表面纳米级结构的影响,这涉及到离子结构和相互作用的改变,从而显著影响双电层电容。在这方面,我们研究了电极表面粗糙度对离子液体双电层的调制作用以及由此对离子结构、相互作用和电容产生的影响。我们进行了固定电压分子动力学模拟,以计算离子液体[BMIm][TFSI]和[BMIm][FSI]在模型碳电极界面处的微分电容分布,该界面的表面通道宽度处于亚纳米和纳米尺度。我们发现,相对于平坦的石墨烯表面,[BMIm][TFSI]和[BMIm][FSI]在具有亚纳米通道宽度的电极表面上都表现出增强的微分电容,但这两种离子液体最显著的增强出乎意料地出现在不同的外加电势范围内。对于[BMIm][TFSI],纳米结构电极在高正电势下显示出电容的显著增强。另一方面,对于[BMIm][FSI],这种增强在正极化时较小,但在低负电势时明显。我们证明,这些电容趋势的差异是由于纳米结构电极表面对最靠近电极界面的离子的电压介导重组的空间位阻约束导致的离子相关性差异所致。例如,当对这些紧密接触的阴离子的约束放松时,TFSI和FSI阴离子倾向于以其带电和非极性基团与正极表面接触的方式进行结构排列。这种阴离子结构排列在很大程度上保留了纳米结构电极附近的阳离子缔合,导致正极化时电容仅略有增加。我们的模拟突出了最内层离子结构对电极表面纳米结构和外加电压的敏感依赖性,以及由此对离子液体双电层的离子相关性和电容的影响。