Suppr超能文献

一个整合逻辑的基因调控网络解析细胞命运决定中的原理。

A logic-incorporated gene regulatory network deciphers principles in cell fate decisions.

作者信息

Xue Gang, Zhang Xiaoyi, Li Wanqi, Zhang Lu, Zhang Zongxu, Zhou Xiaolin, Zhang Di, Zhang Lei, Li Zhiyuan

机构信息

Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.

Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.

出版信息

Elife. 2024 Apr 23;12:RP88742. doi: 10.7554/eLife.88742.

Abstract

Organisms utilize gene regulatory networks (GRN) to make fate decisions, but the regulatory mechanisms of transcription factors (TF) in GRNs are exceedingly intricate. A longstanding question in this field is how these tangled interactions synergistically contribute to decision-making procedures. To comprehensively understand the role of regulatory logic in cell fate decisions, we constructed a logic-incorporated GRN model and examined its behavior under two distinct driving forces (noise-driven and signal-driven). Under the noise-driven mode, we distilled the relationship among fate bias, regulatory logic, and noise profile. Under the signal-driven mode, we bridged regulatory logic and progression-accuracy trade-off, and uncovered distinctive trajectories of reprogramming influenced by logic motifs. In differentiation, we characterized a special logic-dependent priming stage by the solution landscape. Finally, we applied our findings to decipher three biological instances: hematopoiesis, embryogenesis, and trans-differentiation. Orthogonal to the classical analysis of expression profile, we harnessed noise patterns to construct the GRN corresponding to fate transition. Our work presents a generalizable framework for top-down fate-decision studies and a practical approach to the taxonomy of cell fate decisions.

摘要

生物体利用基因调控网络(GRN)来做出命运决定,但GRN中转录因子(TF)的调控机制极其复杂。该领域长期存在的一个问题是,这些错综复杂的相互作用如何协同促成决策过程。为了全面理解调控逻辑在细胞命运决定中的作用,我们构建了一个纳入逻辑的GRN模型,并研究了其在两种不同驱动力(噪声驱动和信号驱动)下的行为。在噪声驱动模式下,我们提炼出了命运偏向、调控逻辑和噪声特征之间的关系。在信号驱动模式下,我们搭建了调控逻辑与进程准确性权衡之间的桥梁,并揭示了受逻辑基序影响的重编程的独特轨迹。在分化过程中,我们通过解景观表征了一个特殊的逻辑依赖启动阶段。最后,我们将研究结果应用于解读三个生物学实例:造血、胚胎发生和转分化。与经典的表达谱分析不同,我们利用噪声模式构建了与命运转变相对应的GRN。我们的工作为自上而下的命运决定研究提供了一个可推广的框架,以及一种细胞命运决定分类的实用方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/652f/11037919/797774e128f2/elife-88742-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验