Bühlmeyer Hanna, Talwar Timo, Eschenbacher Roman, Barreto Jade, Hauner Jonas, Knörr Lukas, Steinrück Hans-Peter, Maier Florian, Libuda Jörg
Interface Research and Catalysis, ECRC, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany.
Chair of Physical Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany.
ACS Appl Mater Interfaces. 2024 May 8;16(18):24063-24074. doi: 10.1021/acsami.4c02239. Epub 2024 Apr 23.
The concept of a solid catalyst with an ionic liquid layer (SCILL) is a promising approach to improve the selectivity of noble metal catalysts in heterogeneous reactions. In order to understand the origins of this selectivity control, we investigated the growth and thermal stability of ultrathin 1-ethyl-3-methylimidazolium trifluormethanesulfonate [CCIm][OTf] films on Pt(111) by infrared reflection absorption spectroscopy (IRAS) and X-ray photoelectron spectroscopy (XPS) in time-resolved and temperature-programmed experiments. We combined these spectroscopy experiments with scanning tunneling microscopy (STM) to obtain detailed insights into the orientation and adsorption geometry of the ions in the first IL layer. Furthermore, we propose a mechanism for the thermal evolution of [CCIm][OTf] on Pt(111). We observe an intact IL layer on the surface at temperatures below 200 K. Adsorbed [CCIm][OTf] forms islands, which are evenly distributed over the surface. The [OTf] anion adsorbs via the SO group, with the molecular axis perpendicular to the surface. Anions and cations are arranged next to each other, alternating on the Pt(111) surface. Upon heating to 250 K, we observe changes in geometry and structural distribution. Whereas at low temperature, the ions are arranged alternately for electrostatic reasons, this driving force is no longer decisive at 250 K. Here, a phase separation of two different species is discernible in STM. We propose that this effect is due to a surface reaction, which changes the charge of the adsorbates. We assume that the IL starts to decompose at around 250 K, and thus, pristine IL and decomposition products coexist on the surface. Also, IRAS and XPS show indication of IL decomposition. Further heating leads to increased IL decomposition. The reaction products associated with the anions are volatile and leave the surface. In contrast, the cation fragments remain on the surface up to temperatures above 420 K.
具有离子液体层的固体催化剂(SCILL)概念是提高多相反应中贵金属催化剂选择性的一种有前景的方法。为了理解这种选择性控制的起源,我们通过红外反射吸收光谱(IRAS)和X射线光电子能谱(XPS),在时间分辨和程序升温实验中研究了超薄三氟甲磺酸1-乙基-3-甲基咪唑鎓[CCIm][OTf]薄膜在Pt(111)上的生长和热稳定性。我们将这些光谱实验与扫描隧道显微镜(STM)相结合,以详细了解第一层离子液体层中离子的取向和吸附几何结构。此外,我们提出了[CCIm][OTf]在Pt(111)上热演化的机制。我们观察到在低于200 K的温度下,表面有完整的离子液体层。吸附的[CCIm][OTf]形成岛屿,均匀分布在表面。[OTf]阴离子通过SO基团吸附,分子轴垂直于表面。阴离子和阳离子在Pt(111)表面彼此相邻排列,交替分布。加热到2�0 K时,我们观察到几何结构和结构分布发生变化。在低温下,由于静电原因离子交替排列,而在250 K时这种驱动力不再起决定性作用。此时,在STM中可以看出两种不同物种的相分离。我们认为这种效应是由于表面反应导致吸附质电荷发生变化。我们假设离子液体在约250 K开始分解,因此原始离子液体和分解产物在表面共存。此外,IRAS和XPS也显示出离子液体分解的迹象。进一步加热会导致离子液体分解加剧。与阴离子相关的反应产物具有挥发性并离开表面。相比之下,阳离子碎片在温度高于420 K时仍留在表面。