Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-031, Lublin, Poland.
Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-031, Lublin, Poland.
Environ Sci Pollut Res Int. 2024 May;31(22):32371-32381. doi: 10.1007/s11356-024-33356-0. Epub 2024 Apr 23.
Siderophores are molecules that exhibit a high specificity for iron (Fe), and their synthesis is induced by a deficiency of bioavailable Fe. Complexes of Fe-siderophore are formed extracellularly and diffuse through porins across membranes into bacterial cells. Siderophores can bind heavy metals facilitating their influx into cells via the same mechanism. The aim of the studies was to determine the ability of siderophore-producing bacteria isolated from soils in the north-west part of Wedel Jarlsberg Land (Spitsbergen) to chelate non-Fe metals (Al, Cd, Co, Cu, Hg, Mn, Sn, and Zn). Specially modified blue agar plates were used, where Fe was substituted by Al, Cd, Co, Cu, Hg, Mn, Sn, or Zn in metal-chrome azurol S (CAS) complex, which retained the blue color. It has been proven that 31 out of 33 strains were capable of producing siderophores that bind to Fe, as well as other metals. Siderophores from Pantoea sp. 24 bound only Fe and Zn, and O. anthropi 55 did not produce any siderophores in pure culture. The average efficiency of Cd, Co, Cu, Mn, Sn, and Zn chelation was either comparable or higher than that of Fe, while Al and Hg showed significantly lower efficiency. Siderophores produced by S. maltophilia 54, P. luteola 27, P. luteola 46, and P. putida 49 exhibited the highest non-Fe metal chelation activity. It can be concluded that the siderophores of these bacteria may constitute an integral part of the metal bioleaching preparation, and this fact will be the subject of further research.
铁载体是对铁(Fe)表现出高特异性的分子,其合成是由生物可利用铁缺乏诱导的。Fe-铁载体复合物在细胞外形成并通过孔蛋白扩散穿过膜进入细菌细胞。铁载体可以结合重金属,通过相同的机制促进其流入细胞。研究的目的是确定从韦德尔贾尔兰斯贝格地区(斯匹次卑尔根)西北部土壤中分离出的产铁载体细菌螯合非铁金属(Al、Cd、Co、Cu、Hg、Mn、Sn 和 Zn)的能力。特别使用了改良的蓝色琼脂平板,其中 Fe 被 Al、Cd、Co、Cu、Hg、Mn、Sn 或 Zn 在金属铬 azurol S(CAS)络合物中取代,该络合物保留蓝色。已证明 33 株菌中的 31 株能够产生与 Fe 以及其他金属结合的铁载体。Pantoea sp. 24 的铁载体仅与 Fe 和 Zn 结合,而 O. anthropi 55 在纯培养中不产生任何铁载体。Cd、Co、Cu、Mn、Sn 和 Zn 的螯合平均效率要么与 Fe 相当,要么更高,而 Al 和 Hg 的效率明显较低。S. maltophilia 54、P. luteola 27、P. luteola 46 和 P. putida 49 产生的铁载体表现出最高的非铁金属螯合活性。可以得出结论,这些细菌的铁载体可能构成金属生物浸出制剂的一个组成部分,这一事实将是进一步研究的主题。