小鼠的久坐行为通过抑制骨骼肌丙酮酸代谢诱导代谢灵活性降低。

Sedentary behavior in mice induces metabolic inflexibility by suppressing skeletal muscle pyruvate metabolism.

机构信息

Diabetes & Metabolism Research Center.

Department of Physical Therapy and Athletic Training.

出版信息

J Clin Invest. 2024 Apr 23;134(11):e167371. doi: 10.1172/JCI167371.

Abstract

Carbohydrates and lipids provide the majority of substrates to fuel mitochondrial oxidative phosphorylation. Metabolic inflexibility, defined as an impaired ability to switch between these fuels, is implicated in a number of metabolic diseases. Here, we explore the mechanism by which physical inactivity promotes metabolic inflexibility in skeletal muscle. We developed a mouse model of sedentariness, small mouse cage (SMC), that, unlike other classic models of disuse in mice, faithfully recapitulated metabolic responses that occur in humans. Bioenergetic phenotyping of skeletal muscle mitochondria displayed metabolic inflexibility induced by physical inactivity, demonstrated by a reduction in pyruvate-stimulated respiration (JO2) in the absence of a change in palmitate-stimulated JO2. Pyruvate resistance in these mitochondria was likely driven by a decrease in phosphatidylethanolamine (PE) abundance in the mitochondrial membrane. Reduction in mitochondrial PE by heterozygous deletion of phosphatidylserine decarboxylase (PSD) was sufficient to induce metabolic inflexibility measured at the whole-body level, as well as at the level of skeletal muscle mitochondria. Low mitochondrial PE in C2C12 myotubes was sufficient to increase glucose flux toward lactate. We further implicate that resistance to pyruvate metabolism is due to attenuated mitochondrial entry via mitochondrial pyruvate carrier (MPC). These findings suggest a mechanism by which mitochondrial PE directly regulates MPC activity to modulate metabolic flexibility in mice.

摘要

碳水化合物和脂质为线粒体氧化磷酸化提供了大部分底物。代谢灵活性差,即难以在这些燃料之间切换的能力受损,与许多代谢疾病有关。在这里,我们探讨了身体不活动促进骨骼肌代谢灵活性差的机制。我们开发了一种久坐不动的小鼠模型,即小笼子(Small Mouse Cage,SMC),与其他经典的小鼠失用模型不同,它忠实地再现了人类发生的代谢反应。骨骼肌线粒体的生物能量表型显示,由于身体不活动导致代谢灵活性受损,表现为在没有改变棕榈酸刺激的 JO2 的情况下,减少了丙酮酸刺激的呼吸(JO2)。这些线粒体中的丙酮酸抗性可能是由于线粒体膜中磷脂酰乙醇胺(PE)含量减少所致。通过半等位基因缺失磷脂丝氨酸脱羧酶(PSD)减少线粒体 PE,足以诱导全身水平以及骨骼肌线粒体水平的代谢灵活性受损。C2C12 肌管中低线粒体 PE 足以增加葡萄糖向乳酸的通量。我们进一步表明,对丙酮酸代谢的抗性是由于通过线粒体丙酮酸载体(MPC)减弱线粒体进入所致。这些发现表明,线粒体 PE 通过直接调节 MPC 活性来调节小鼠代谢灵活性的机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f12f/11142742/cfa4db458137/jci-134-167371-g236.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索