Jeremiah Sekione Reward, Camacho David, Park Jong Hyuk
Department of Electrical and Information Engineering, Seoul National University of Science and Technology, Seoul, Republic of Korea; Department of Computer Science, Mwalimu Julius K. Nyerere University of Agriculture and Technology (MJNUAT), Mara, Tanzania.
School of Computer Systems Engineering, Universidad Politécnica de Madrid, Calle de Alan Turing, 28038 Madrid, Spain.
J Adv Res. 2024 Dec;66:59-70. doi: 10.1016/j.jare.2024.04.021. Epub 2024 Apr 21.
Increased deployment of heterogeneous and complex Industrial Internet of Things (IIoT) applications such as predictive maintenance and asset tracking places a substantial strain on the limited computational and communication resources. To cater to the rigorous demands of these applications, it is imperative to devise an adaptive online resource allocation method to enhance the efficiency of the current network operations. Multiaccess edge computing (MEC) and digital twins (DTs) are promising solutions that facilitate the realization of edge intelligence and find applications in various industrial applications. Yet, little is known about the advantage the two technologies offer to IIoT networks.
This study presents a joint optimization of offloading and resource allocation approach where MEC-server DT is created at the edge, and nonorthogonal multiple access (NOMA) communication is considered between IIoT devices and the industrial gateways (IGWs) for spectral efficiency. Our proposed framework is tailored to reduce mean task completion latency and enhance overall IIoT network throughput.
To achieve our objective, we jointly optimize the computation resource allocation (RA), subchannel assignment (SA), and offloading decisions (OD). Given the inherent complexity of the problem, we further divide it into RA and SA/OD sub-problems. Employing Deep Reinforcement Learning (DRL), we have formulated a solution delineating the most efficient RA strategy and leveraged DT for optimal SA/OD strategies.
Simulation results demonstrate the superior efficiency of our framework, realizing up to 92 % of the efficiency of the exhaustive search method while reducing computation and action decision time.
In light of system dynamics considered for our work, the proposed framework perfomance showcase its robustness and potential application in real-world IIoT networks.
诸如预测性维护和资产跟踪等异构且复杂的工业物联网(IIoT)应用的部署不断增加,给有限的计算和通信资源带来了巨大压力。为了满足这些应用的严格要求,必须设计一种自适应在线资源分配方法,以提高当前网络运营的效率。多接入边缘计算(MEC)和数字孪生(DT)是很有前景的解决方案,有助于实现边缘智能,并在各种工业应用中找到用武之地。然而,对于这两种技术为工业物联网网络带来的优势,人们知之甚少。
本研究提出一种卸载与资源分配方法的联合优化,即在边缘创建MEC服务器数字孪生,并考虑工业物联网设备与工业网关(IGW)之间的非正交多址接入(NOMA)通信,以提高频谱效率。我们提出的框架旨在减少平均任务完成延迟并提高工业物联网网络的整体吞吐量。
为实现我们的目标,我们联合优化计算资源分配(RA)、子信道分配(SA)和卸载决策(OD)。鉴于该问题固有的复杂性,我们进一步将其分为RA和SA/OD子问题。我们采用深度强化学习(DRL),制定了一种解决方案,描绘了最有效的RA策略,并利用数字孪生实现最优的SA/OD策略。
仿真结果证明了我们框架的卓越效率,在减少计算和行动决策时间的同时,实现了穷举搜索方法效率的92%。
鉴于我们工作中考虑的系统动态特性,所提出框架的性能展示了其在实际工业物联网网络中的鲁棒性和潜在应用价值。