Suppr超能文献

基于 RANet 的心电图信号分类方法。

Classification Method of ECG Signals Based on RANet.

机构信息

Faculty of Information, Beijing University of Technology, Beijing, China.

出版信息

Cardiovasc Eng Technol. 2024 Oct;15(5):561-571. doi: 10.1007/s13239-024-00730-5. Epub 2024 Apr 23.

Abstract

BACKGROUND

Electrocardiograms (ECG) are an important source of information on human heart health and are widely used to detect different types of arrhythmias.

OBJECTIVE

With the advancement of deep learning, end-to-end ECG classification models based on neural networks have been developed. However, deeper network layers lead to gradient vanishing. Moreover, different channels and periods of an ECG signal hold varying significance for identifying different types of ECG abnormalities.

METHODS

To solve these two problems, an ECG classification method based on a residual attention neural network is proposed in this paper. The residual network (ResNet) is used to solve the gradient vanishing problem. Moreover, it has fewer model parameters, and its structure is simpler. An attention mechanism is added to focus on key information, integrate channel features, and improve voting methods to alleviate the problem of data imbalance.

RESULTS

Experiments and verifications are conducted using the PhysioNet/CinC Challenge 2017 dataset. The average F1 value is 0.817, which is 0.064 higher than that for the ResNet model. Compared with the mainstream methods, the performance is excellent.

摘要

背景

心电图(ECG)是反映人类心脏健康的重要信息源,被广泛用于检测不同类型的心律失常。

目的

随着深度学习的发展,基于神经网络的端到端心电图分类模型已经被开发出来。然而,更深的网络层会导致梯度消失。此外,心电图信号的不同通道和时段对于识别不同类型的心电图异常具有不同的重要性。

方法

为了解决这两个问题,本文提出了一种基于残差注意力神经网络的心电图分类方法。残差网络(ResNet)用于解决梯度消失问题。此外,它的模型参数更少,结构更简单。添加了注意力机制来关注关键信息,整合通道特征,并改进投票方法,以缓解数据不平衡问题。

结果

使用 PhysioNet/CinC Challenge 2017 数据集进行了实验和验证。平均 F1 值为 0.817,比 ResNet 模型高 0.064。与主流方法相比,性能优异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验