School of Information Science and Engineering (Institute of Data Science and Technology), Shandong Normal University, Jinan, 250014, China.
School of Information Engineering, Shandong Management University, Jinan, 250357, China.
Sci Rep. 2024 Jun 4;14(1):12823. doi: 10.1038/s41598-024-63378-0.
The prevalence of cardiovascular disease (CVD) has surged in recent years, making it the foremost cause of mortality among humans. The Electrocardiogram (ECG), being one of the pivotal diagnostic tools for cardiovascular diseases, is increasingly gaining prominence in the field of machine learning. However, prevailing neural network models frequently disregard the spatial dimension features inherent in ECG signals. In this paper, we propose an ECG autoencoder network architecture incorporating low-rank attention (LRA-autoencoder). It is designed to capture potential spatial features of ECG signals by interpreting the signals from a spatial perspective and extracting correlations between different signal points. Additionally, the low-rank attention block (LRA-block) obtains spatial features of electrocardiogram signals through singular value decomposition, and then assigns these spatial features as weights to the electrocardiogram signals, thereby enhancing the differentiation of features among different categories. Finally, we utilize the ResNet-18 network classifier to assess the performance of the LRA-autoencoder on both the MIT-BIH Arrhythmia and PhysioNet Challenge 2017 datasets. The experimental results reveal that the proposed method demonstrates superior classification performance. The mean accuracy on the MIT-BIH Arrhythmia dataset is as high as 0.997, and the mean accuracy and -score on the PhysioNet Challenge 2017 dataset are 0.850 and 0.843.
近年来,心血管疾病(CVD)的患病率急剧上升,使其成为人类首要的死亡原因。心电图(ECG)作为心血管疾病的主要诊断工具之一,在机器学习领域的重要性日益凸显。然而,现有的神经网络模型往往忽略了心电图信号中固有的空间维度特征。在本文中,我们提出了一种结合低秩注意力(LRA)的心电图自动编码器网络架构(LRA-autoencoder)。它旨在通过从空间角度解释信号并提取不同信号点之间的相关性,来捕捉心电图信号的潜在空间特征。此外,低秩注意力块(LRA-block)通过奇异值分解获取心电图信号的空间特征,然后将这些空间特征作为权重分配给心电图信号,从而增强不同类别特征之间的区分度。最后,我们利用 ResNet-18 网络分类器评估 LRA-autoencoder 在 MIT-BIH 心律失常和 PhysioNet 挑战赛 2017 数据集上的性能。实验结果表明,所提出的方法具有优越的分类性能。在 MIT-BIH 心律失常数据集上的平均准确率高达 0.997,在 PhysioNet 挑战赛 2017 数据集上的平均准确率和 F1 分数分别为 0.850 和 0.843。