Suppr超能文献

一种基于自然语言处理的随访检查延迟半自动识别系统:意大利临床转诊案例研究。

A NLP-based semi-automatic identification system for delays in follow-up examinations: an Italian case study on clinical referrals.

作者信息

Torri Vittorio, Ercolanoni Michele, Bortolan Francesco, Leoni Olivia, Ieva Francesca

机构信息

MOX - Modelling and Scientific Computing Lab, Department of Mathematics, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan, 20133, Italy.

ARIA s.p.a - Azienda Regionale per l'Innovazione e gli Acquisti, Via Taramelli 26, Milan, 20124, Italy.

出版信息

BMC Med Inform Decis Mak. 2024 Apr 23;24(1):107. doi: 10.1186/s12911-024-02506-2.

Abstract

BACKGROUND

This study aims to propose a semi-automatic method for monitoring the waiting times of follow-up examinations within the National Health System (NHS) in Italy, which is currently not possible to due the absence of the necessary structured information in the official databases.

METHODS

A Natural Language Processing (NLP) based pipeline has been developed to extract the waiting time information from the text of referrals for follow-up examinations in the Lombardy Region. A manually annotated dataset of 10 000 referrals has been used to develop the pipeline and another manually annotated dataset of 10 000 referrals has been used to test its performance. Subsequently, the pipeline has been used to analyze all 12 million referrals prescribed in 2021 and performed by May 2022 in the Lombardy Region.

RESULTS

The NLP-based pipeline exhibited high precision (0.999) and recall (0.973) in identifying waiting time information from referrals' texts, with high accuracy in normalization (0.948-0.998). The overall reporting of timing indications in referrals' texts for follow-up examinations was low (2%), showing notable variations across medical disciplines and types of prescribing physicians. Among the referrals reporting waiting times, 16% experienced delays (average delay = 19 days, standard deviation = 34 days), with significant differences observed across medical disciplines and geographical areas.

CONCLUSIONS

The use of NLP proved to be a valuable tool for assessing waiting times in follow-up examinations, which are particularly critical for the NHS due to the significant impact of chronic diseases, where follow-up exams are pivotal. Health authorities can exploit this tool to monitor the quality of NHS services and optimize resource allocation.

摘要

背景

本研究旨在提出一种半自动方法,用于监测意大利国家卫生系统(NHS)中后续检查的等待时间,由于官方数据库中缺乏必要的结构化信息,目前无法做到这一点。

方法

已开发出一种基于自然语言处理(NLP)的流程,用于从伦巴第地区后续检查转诊文本中提取等待时间信息。使用了一个包含10000份转诊的手动注释数据集来开发该流程,另一个包含10000份转诊的手动注释数据集用于测试其性能。随后,该流程被用于分析2021年开具并于2022年5月前在伦巴第地区执行的所有1200万份转诊。

结果

基于NLP的流程在从转诊文本中识别等待时间信息方面表现出高精度(0.999)和召回率(0.973),在归一化方面具有高准确性(0.948 - 0.998)。后续检查转诊文本中的时间指示总体报告率较低(2%),在医学学科和开处方医生类型之间存在显著差异。在报告等待时间的转诊中,16%经历了延迟(平均延迟 = 19天,标准差 = 34天),在医学学科和地理区域之间观察到显著差异。

结论

事实证明,使用NLP是评估后续检查等待时间的宝贵工具,由于慢性病的重大影响,后续检查对国家卫生系统尤为关键,而后续检查至关重要。卫生当局可以利用此工具监测国家卫生系统服务的质量并优化资源分配。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6db6/11040851/8e8d0fb4e93f/12911_2024_2506_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验