Suppr超能文献

利用行政数据开发并验证一种新型多源合并症评分:一项来自意大利的大型基于人群的队列研究。

Developing and validating a novel multisource comorbidity score from administrative data: a large population-based cohort study from Italy.

作者信息

Corrao Giovanni, Rea Federico, Di Martino Mirko, De Palma Rossana, Scondotto Salvatore, Fusco Danilo, Lallo Adele, Belotti Laura Maria Beatrice, Ferrante Mauro, Pollina Addario Sebastiano, Merlino Luca, Mancia Giuseppe, Carle Flavia

机构信息

National Centre for Healthcare Research & Pharmacoepidemiology, at the University of Milano-Bicocca, Milan, Italy.

Laboratory of Healthcare Research & Pharmacoepidemiology, Unit of Biostatistics, Epidemiology and Public Health, Department of Statistics and Quantitative Methods, University of Milano-Bicocca, Milan, Italy.

出版信息

BMJ Open. 2017 Dec 26;7(12):e019503. doi: 10.1136/bmjopen-2017-019503.

Abstract

OBJECTIVE

To develop and validate a novel comorbidity score (multisource comorbidity score (MCS)) predictive of mortality, hospital admissions and healthcare costs using multiple source information from the administrative Italian National Health System (NHS) databases.

METHODS

An index of 34 variables (measured from inpatient diagnoses and outpatient drug prescriptions within 2 years before baseline) independently predicting 1-year mortality in a sample of 500 000 individuals aged 50 years or older randomly selected from the NHS beneficiaries of the Italian region of Lombardy (training set) was developed. The corresponding weights were assigned from the regression coefficients of a Weibull survival model. MCS performance was evaluated by using an internal (ie, another sample of 500 000 NHS beneficiaries from Lombardy) and three external (each consisting of 500 000 NHS beneficiaries from Emilia-Romagna, Lazio and Sicily) validation sets. Discriminant power and net reclassification improvement were used to compare MCS performance with that of other comorbidity scores. MCS ability to predict secondary health outcomes (ie, hospital admissions and costs) was also investigated.

RESULTS

Primary and secondary outcomes progressively increased with increasing MCS value. MCS improved the net 1-year mortality reclassification from 27% (with respect to the Chronic Disease Score) to 69% (with respect to the Elixhauser Index). MCS discrimination performance was similar in the four regions of Italy we tested, the area under the receiver operating characteristic curves (95% CI) being 0.78 (0.77 to 0.79) in Lombardy, 0.78 (0.77 to 0.79) in Emilia-Romagna, 0.77 (0.76 to 0.78) in Lazio and 0.78 (0.77 to 0.79) in Sicily.

CONCLUSION

MCS seems better than conventional scores for predicting health outcomes, at least in the general population from Italy. This may offer an improved tool for risk adjustment, policy planning and identifying patients in need of a focused treatment approach in the everyday medical practice.

摘要

目的

利用意大利国家卫生系统(NHS)行政数据库中的多源信息,开发并验证一种新的合并症评分(多源合并症评分(MCS)),以预测死亡率、住院率和医疗费用。

方法

从意大利伦巴第地区NHS受益人群中随机抽取50万名50岁及以上个体作为样本(训练集),建立一个由34个变量组成的指标(根据基线前2年内的住院诊断和门诊药物处方测量),这些变量可独立预测1年死亡率。相应权重根据威布尔生存模型的回归系数确定。通过使用内部验证集(即来自伦巴第的另外50万名NHS受益人群样本)和三个外部验证集(每个验证集由来自艾米利亚 - 罗马涅、拉齐奥和西西里的50万名NHS受益人群组成)来评估MCS的性能。使用判别力和净重新分类改善来比较MCS与其他合并症评分的性能。还研究了MCS预测次要健康结局(即住院率和费用)的能力。

结果

主要和次要结局随着MCS值的增加而逐渐增加。MCS将1年死亡率的净重新分类从27%(相对于慢性病评分)提高到69%(相对于埃利克斯豪泽指数)。在我们测试的意大利四个地区,MCS的判别性能相似,受试者工作特征曲线下面积(95%CI)在伦巴第为0.78(0.77至0.79),在艾米利亚 - 罗马涅为0.78(0.77至0.79),在拉齐奥为0.77(0.76至0.78),在西西里为0.78(0.77至0.79)。

结论

至少在意大利的普通人群中,如果用于预测健康结局,MCS似乎优于传统评分。这可能为日常医疗实践中的风险调整、政策规划以及识别需要针对性治疗方法的患者提供一个更好的工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验