López Luis, Martínez Lyza M, Caicedo Jaileen R, Fernández-Vega Lauren, Cunci Lisandro
Department of Chemistry, University of Puerto Rico - Rio Piedras, 17 Ave Universidad Ste 1701, San Juan, Puerto Rico 00931, United States.
Department of Chemistry, Universidad Ana G. Méndez - Gurabo, Carr. 189, Km 3.3, Gurabo, Puerto Rico 00778, United States.
Electrochim Acta. 2024 Jun 1;488. doi: 10.1016/j.electacta.2024.144243. Epub 2024 Apr 9.
Electrochemical impedance spectroscopy (EIS) is a powerful technique for studying the interaction at electrode/solution interfaces. The adoption of EIS for obtaining analytical signals in biosensors based on aptamers is gaining popularity because of its advantageous characteristics for molecular recognition. Neuropeptide Y (NPY), the most abundant neuropeptide in the body, plays a crucial role with its stress-relieving properties. Quantitative measurement of NPY is imperative for understanding its role in these and other biological processes. Although aptamer-modified electrodes for NPY detection using EIS present a promising alternative, the correlation between the data obtained and the adsorption process on the electrodes is not fully understood. Various studies utilize the change in charge transfer resistance when employing an active redox label. In contrast, label-free measurement relies on changes in capacitance. To address these challenges, we focused on the interaction between aptamer-modified planar electrodes and their target, NPY. We proposed utilizing -ω*Z as the analytical signal, which facilitated the analysis of the adsorption process using an analogous Langmuir isotherm equation. This approach differs from implantable microelectrodes, which adhere to the Freundlich adsorption isotherm. Notably, our method obviates the need for a redox label and enables the detection of NPY at concentrations as low as 20 pg/mL. This methodology demonstrated exceptional selectivity, exhibiting a signal difference of over 20-to-1 against potential interfering molecules.
电化学阻抗谱(EIS)是研究电极/溶液界面相互作用的有力技术。由于其在分子识别方面的优势特性,采用EIS在基于适体的生物传感器中获取分析信号正变得越来越流行。神经肽Y(NPY)是体内最丰富的神经肽,因其缓解压力的特性而发挥着关键作用。对NPY进行定量测量对于理解其在这些及其他生物过程中的作用至关重要。尽管使用EIS检测NPY的适体修饰电极是一种很有前景的替代方法,但所获得的数据与电极上吸附过程之间的相关性尚未完全理解。各种研究在使用活性氧化还原标记时利用电荷转移电阻的变化。相比之下,无标记测量依赖于电容的变化。为应对这些挑战,我们专注于适体修饰的平面电极与其靶标NPY之间的相互作用。我们提出利用-ω*Z作为分析信号,这有助于使用类似的朗缪尔等温方程分析吸附过程。这种方法不同于遵循弗伦德里希吸附等温线的植入式微电极。值得注意的是,我们的方法无需氧化还原标记,能够检测低至20 pg/mL浓度的NPY。该方法表现出卓越的选择性,对潜在干扰分子的信号差异超过20比1。