Suppr超能文献

适体修饰平面电极中神经肽Y的测定

Measurement of Neuropeptide Y in Aptamer-Modified Planar Electrodes.

作者信息

López Luis, Martínez Lyza M, Caicedo Jaileen R, Fernández-Vega Lauren, Cunci Lisandro

机构信息

Department of Chemistry, University of Puerto Rico - Rio Piedras, 17 Ave Universidad Ste 1701, San Juan, Puerto Rico 00931, United States.

Department of Chemistry, Universidad Ana G. Méndez - Gurabo, Carr. 189, Km 3.3, Gurabo, Puerto Rico 00778, United States.

出版信息

Electrochim Acta. 2024 Jun 1;488. doi: 10.1016/j.electacta.2024.144243. Epub 2024 Apr 9.

Abstract

Electrochemical impedance spectroscopy (EIS) is a powerful technique for studying the interaction at electrode/solution interfaces. The adoption of EIS for obtaining analytical signals in biosensors based on aptamers is gaining popularity because of its advantageous characteristics for molecular recognition. Neuropeptide Y (NPY), the most abundant neuropeptide in the body, plays a crucial role with its stress-relieving properties. Quantitative measurement of NPY is imperative for understanding its role in these and other biological processes. Although aptamer-modified electrodes for NPY detection using EIS present a promising alternative, the correlation between the data obtained and the adsorption process on the electrodes is not fully understood. Various studies utilize the change in charge transfer resistance when employing an active redox label. In contrast, label-free measurement relies on changes in capacitance. To address these challenges, we focused on the interaction between aptamer-modified planar electrodes and their target, NPY. We proposed utilizing -ω*Z as the analytical signal, which facilitated the analysis of the adsorption process using an analogous Langmuir isotherm equation. This approach differs from implantable microelectrodes, which adhere to the Freundlich adsorption isotherm. Notably, our method obviates the need for a redox label and enables the detection of NPY at concentrations as low as 20 pg/mL. This methodology demonstrated exceptional selectivity, exhibiting a signal difference of over 20-to-1 against potential interfering molecules.

摘要

电化学阻抗谱(EIS)是研究电极/溶液界面相互作用的有力技术。由于其在分子识别方面的优势特性,采用EIS在基于适体的生物传感器中获取分析信号正变得越来越流行。神经肽Y(NPY)是体内最丰富的神经肽,因其缓解压力的特性而发挥着关键作用。对NPY进行定量测量对于理解其在这些及其他生物过程中的作用至关重要。尽管使用EIS检测NPY的适体修饰电极是一种很有前景的替代方法,但所获得的数据与电极上吸附过程之间的相关性尚未完全理解。各种研究在使用活性氧化还原标记时利用电荷转移电阻的变化。相比之下,无标记测量依赖于电容的变化。为应对这些挑战,我们专注于适体修饰的平面电极与其靶标NPY之间的相互作用。我们提出利用-ω*Z作为分析信号,这有助于使用类似的朗缪尔等温方程分析吸附过程。这种方法不同于遵循弗伦德里希吸附等温线的植入式微电极。值得注意的是,我们的方法无需氧化还原标记,能够检测低至20 pg/mL浓度的NPY。该方法表现出卓越的选择性,对潜在干扰分子的信号差异超过20比1。

相似文献

1
Measurement of Neuropeptide Y in Aptamer-Modified Planar Electrodes.
Electrochim Acta. 2024 Jun 1;488. doi: 10.1016/j.electacta.2024.144243. Epub 2024 Apr 9.
2
Measurement of Neuropeptide Y Using Aptamer-Modified Microelectrodes by Electrochemical Impedance Spectroscopy.
Anal Chem. 2021 Jan 19;93(2):973-980. doi: 10.1021/acs.analchem.0c03719. Epub 2020 Dec 10.
3
Development of a Neuropeptide Y-Sensitive Implantable Microelectrode for Continuous Measurements.
ACS Sens. 2024 May 24;9(5):2645-2652. doi: 10.1021/acssensors.4c00449. Epub 2024 May 6.
4
Measurement of neuropeptide Y with molecularly imprinted polypyrrole on carbon fiber microelectrodes.
Neuropeptides. 2024 Apr;104:102413. doi: 10.1016/j.npep.2024.102413. Epub 2024 Feb 5.
6
Structural Changes of Mercaptohexanol Self-Assembled Monolayers on Gold and Their Influence on Impedimetric Aptamer Sensors.
Anal Chem. 2019 Nov 19;91(22):14697-14704. doi: 10.1021/acs.analchem.9b03946. Epub 2019 Nov 7.
7
DNA aptamers selection and characterization for development of label-free impedimetric aptasensor for neurotoxin anatoxin-a.
Biosens Bioelectron. 2015 Jun 15;68:295-302. doi: 10.1016/j.bios.2015.01.002. Epub 2015 Jan 2.
9
Impedance-Based Nanoporous Anodized Alumina/ITO Platforms for Label-Free Biosensors.
ACS Appl Mater Interfaces. 2022 Jan 12;14(1):150-158. doi: 10.1021/acsami.1c17243. Epub 2021 Dec 22.

引用本文的文献

本文引用的文献

1
Measurement of neuropeptide Y with molecularly imprinted polypyrrole on carbon fiber microelectrodes.
Neuropeptides. 2024 Apr;104:102413. doi: 10.1016/j.npep.2024.102413. Epub 2024 Feb 5.
2
Development of an Electrochemical, Aptamer-Based Sensor for Dynamic Detection of Neuropeptide Y.
ACS Sens. 2023 Dec 22;8(12):4504-4511. doi: 10.1021/acssensors.3c00855. Epub 2023 Nov 30.
4
Finding the Lost Dissociation Constant of Electrochemical Aptamer-Based Biosensors.
Anal Chem. 2023 Jan 31;95(4):2229-2237. doi: 10.1021/acs.analchem.2c03566. Epub 2023 Jan 13.
5
A review of electrochemical impedance spectroscopy for bioanalytical sensors.
Anal Methods. 2022 Nov 24;14(45):4602-4624. doi: 10.1039/d2ay00970f.
6
Development of a flexible, sweat-based neuropeptide Y detection platform.
RSC Adv. 2020 Jun 17;10(39):23173-23186. doi: 10.1039/d0ra03729j. eCollection 2020 Jun 16.
7
Co-transmission of neuropeptides and monoamines choreograph the C. elegans escape response.
PLoS Genet. 2022 Mar 3;18(3):e1010091. doi: 10.1371/journal.pgen.1010091. eCollection 2022 Mar.
9
Immobilization Strategies for Enhancing Sensitivity of Electrochemical Aptamer-Based Sensors.
ACS Appl Mater Interfaces. 2021 Mar 3;13(8):9491-9499. doi: 10.1021/acsami.0c20707. Epub 2021 Jan 15.
10
Faradaic electrochemical impedance spectroscopy for enhanced analyte detection in diagnostics.
Biosens Bioelectron. 2021 Apr 1;177:112949. doi: 10.1016/j.bios.2020.112949. Epub 2020 Dec 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验