Jo Jin Hui, Kim Ki Jung, An Eun Ji, Lee Jieun, Jae Hyunmo, Roh Dongkyu, Chi Won Seok
Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea.
School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea.
ACS Appl Mater Interfaces. 2024 Apr 24. doi: 10.1021/acsami.3c19071.
To address the plasticization phenomenon and MOF-polymer interfacial defects, we report the synthesis of ionic cross-linked MOF MMMs from a dual brominated polymer and MOF components by using ,'-dimethylpiperazine as the cross-linker. We synthesized brominated MIL-101(Cr) nanoparticles by using mixed linkers and prepared brominated polyimide (6FDA-DAM-Br) to form ionic cross-linked MMMs. The gas permeation properties of the polyimide, ionic cross-linked MOF-polymer MMMs, and non-cross-linked MOF-polymer MMMs with various MOF weight loadings were investigated systematically to effectively understand the effects of MOF weight loading and ionic cross-linking. The ionic cross-linked 40 wt % MOF-polymer MMM exhibited significantly enhanced gas permeability with an H permeability of 1640 Barrer and CO permeability of 1981 Barrer and slightly decreased H/CH, H/N, CO/CH and CO/N selectivities of 16.9, 15.4, 20.5, and 18.6, respectively. The H and CO permeabilities are approximately 2-3 fold higher than those of the pure polyimide (6FDA-DAM) membrane. Moreover, the ionic cross-linked 40 wt % MOF-polymer MMM exhibited significantly increased resistance to plasticization. This is because the brominated MOF incorporation boosted molecular transport and polymer chain rigidity, and ionic cross-linking further reduced the number of interfacial defects and polymer chain mobility.
为了解决增塑现象和金属有机框架(MOF)-聚合物界面缺陷问题,我们报道了通过使用1,4-二甲基哌嗪作为交联剂,由双溴化聚合物和MOF组分合成离子交联的MOF混合基质膜(MMMs)。我们使用混合配体合成了溴化MIL-101(Cr)纳米颗粒,并制备了溴化聚酰亚胺(6FDA-DAM-Br)以形成离子交联的MMMs。系统地研究了聚酰亚胺、具有不同MOF重量负载的离子交联MOF-聚合物MMMs和非交联MOF-聚合物MMMs的气体渗透性能,以有效了解MOF重量负载和离子交联的影响。离子交联的40 wt% MOF-聚合物MMM表现出显著增强的气体渗透性,氢气渗透率为1640 Barrer,一氧化碳渗透率为1981 Barrer,氢气/甲烷、氢气/氮气、一氧化碳/甲烷和一氧化碳/氮气的选择性略有下降,分别为16.9、15.4、20.5和18.6。氢气和一氧化碳的渗透率比纯聚酰亚胺(6FDA-DAM)膜高约2-3倍。此外,离子交联的40 wt% MOF-聚合物MMM表现出显著提高的抗增塑能力。这是因为溴化MOF的掺入促进了分子传输和聚合物链刚性,而离子交联进一步减少了界面缺陷的数量和聚合物链的流动性。