Suppr超能文献

用于抑制界面缺陷和增塑行为的离子交联金属有机框架-聚合物混合基质膜

Ionic Cross-Linked MOF-Polymer Mixed-Matrix Membranes for Suppressing Interfacial Defects and Plasticization Behavior.

作者信息

Jo Jin Hui, Kim Ki Jung, An Eun Ji, Lee Jieun, Jae Hyunmo, Roh Dongkyu, Chi Won Seok

机构信息

Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea.

School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea.

出版信息

ACS Appl Mater Interfaces. 2024 Apr 24. doi: 10.1021/acsami.3c19071.

Abstract

To address the plasticization phenomenon and MOF-polymer interfacial defects, we report the synthesis of ionic cross-linked MOF MMMs from a dual brominated polymer and MOF components by using ,'-dimethylpiperazine as the cross-linker. We synthesized brominated MIL-101(Cr) nanoparticles by using mixed linkers and prepared brominated polyimide (6FDA-DAM-Br) to form ionic cross-linked MMMs. The gas permeation properties of the polyimide, ionic cross-linked MOF-polymer MMMs, and non-cross-linked MOF-polymer MMMs with various MOF weight loadings were investigated systematically to effectively understand the effects of MOF weight loading and ionic cross-linking. The ionic cross-linked 40 wt % MOF-polymer MMM exhibited significantly enhanced gas permeability with an H permeability of 1640 Barrer and CO permeability of 1981 Barrer and slightly decreased H/CH, H/N, CO/CH and CO/N selectivities of 16.9, 15.4, 20.5, and 18.6, respectively. The H and CO permeabilities are approximately 2-3 fold higher than those of the pure polyimide (6FDA-DAM) membrane. Moreover, the ionic cross-linked 40 wt % MOF-polymer MMM exhibited significantly increased resistance to plasticization. This is because the brominated MOF incorporation boosted molecular transport and polymer chain rigidity, and ionic cross-linking further reduced the number of interfacial defects and polymer chain mobility.

摘要

为了解决增塑现象和金属有机框架(MOF)-聚合物界面缺陷问题,我们报道了通过使用1,4-二甲基哌嗪作为交联剂,由双溴化聚合物和MOF组分合成离子交联的MOF混合基质膜(MMMs)。我们使用混合配体合成了溴化MIL-101(Cr)纳米颗粒,并制备了溴化聚酰亚胺(6FDA-DAM-Br)以形成离子交联的MMMs。系统地研究了聚酰亚胺、具有不同MOF重量负载的离子交联MOF-聚合物MMMs和非交联MOF-聚合物MMMs的气体渗透性能,以有效了解MOF重量负载和离子交联的影响。离子交联的40 wt% MOF-聚合物MMM表现出显著增强的气体渗透性,氢气渗透率为1640 Barrer,一氧化碳渗透率为1981 Barrer,氢气/甲烷、氢气/氮气、一氧化碳/甲烷和一氧化碳/氮气的选择性略有下降,分别为16.9、15.4、20.5和18.6。氢气和一氧化碳的渗透率比纯聚酰亚胺(6FDA-DAM)膜高约2-3倍。此外,离子交联的40 wt% MOF-聚合物MMM表现出显著提高的抗增塑能力。这是因为溴化MOF的掺入促进了分子传输和聚合物链刚性,而离子交联进一步减少了界面缺陷的数量和聚合物链的流动性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验