Department of Biological Sciences, School of Science and Aerospace Studies, Moi University, Eldoret, Kenya.
Africa Centre of Excellence in Phytochemicals, Textile and Renewable Energy (ACE II PTRE), Moi University, Eldoret, Kenya.
Methods Mol Biol. 2024;2788:157-169. doi: 10.1007/978-1-0716-3782-1_9.
This chapter presents a comprehensive approach to predict novel miRNAs encoded by plant viruses and identify their target plant genes, through integration of various ab initio computational approaches. The predictive process begins with the analysis of plant viral sequences using the VMir Analyzer software. VMir Viewer software is then used to extract primary hairpins from these sequences. To distinguish real miRNA precursors from pseudo miRNA precursors, MiPred web-based software is employed. Verified real pre-miRNA sequences with a minimum free energy of < -20 Kcal/mol, are further analyzed using the RNAshapes software. Validation of predictions involves comparing them with available Expressed Sequence Tags (ESTs) from the relevant plant using BlastN. Short sequences with lengths ranging from 19 to 25 nucleotides and exhibiting <5 mismatches are prioritized for miRNA prediction. The precise locations of these short sequences within pre-miRNA structures generated using RNAshapes are meticulously identified, with a focus on those situated on the 5' and 3' arms of the structures, indicating potential miRNAs. Sequences within the arms of pre-miRNA structures are used to predict target sites within the ESTs of the specific plant, facilitated by psRNA Target software, revealing genes with potential regulatory roles in the plant. To confirm the outcome of target prediction, results are individually submitted to the RNAhybrid web-based software. For practical demonstration, this approach is applied to analyze African cassava mosaic virus (ACMV) and East African cassava mosaic virus-Uganda (EACMV-UG) viruses, as well as the ESTs of Jatropha and cassava.
本章提出了一种综合方法,通过整合各种从头计算方法,预测植物病毒编码的新 miRNA 并识别其靶植物基因。预测过程首先使用 VMir Analyzer 软件分析植物病毒序列。然后使用 VMir Viewer 软件从这些序列中提取初级发夹。为了将真正的 miRNA 前体与伪 miRNA 前体区分开来,使用 MiPred 基于网络的软件。使用 RNAshapes 软件进一步分析具有< -20 Kcal/mol 最小自由能的验证后的真实 pre-miRNA 序列。使用 BlastN 将预测结果与相关植物的可用表达序列标签 (EST) 进行比较以进行验证。预测 miRNA 时,优先考虑长度为 19 到 25 个核苷酸且具有<5 个错配的短序列。使用 RNAshapes 生成的 pre-miRNA 结构内的这些短序列的精确位置被仔细确定,重点是位于结构的 5'和 3'臂上的那些,表明潜在的 miRNA。pre-miRNA 结构臂内的序列用于通过 psRNA Target 软件预测特定植物的 EST 内的靶位点,揭示植物中具有潜在调节作用的基因。为了确认靶预测的结果,将结果分别提交给 RNAhybrid 基于网络的软件。为了实际演示,该方法应用于分析非洲木薯花叶病毒 (ACMV) 和东非木薯花叶病毒-乌干达 (EACMV-UG) 病毒以及麻疯树和木薯的 EST。