Cardiology and Electrophysiology Unit, Santa Maria Nuova Hospital, Florence, Italy; Department of Experimental and Clinical Medicine, University of Florence, Italy.
Department of Information Engineering, University of Florence, 50139 Florence, Italy.
Int J Cardiol. 2024 Jul 15;407:132088. doi: 10.1016/j.ijcard.2024.132088. Epub 2024 Apr 23.
The accuracy of available prediction tools for clinical outcomes in patients with atrial fibrillation (AF) remains modest. Machine Learning (ML) has been used to predict outcomes in the AF population, but not in a population entirely on anticoagulant therapy.
Different supervised ML models were applied to predict all-cause death, cardiovascular (CV) death, major bleeding and stroke in anticoagulated patients with AF, processing data from the multicenter START-2 Register.
11078 AF patients (male n = 6029, 54.3%) were enrolled with a median follow-up period of 1.5 years [IQR 1.0-2.6]. Patients on Vitamin K Antagonists (VKA) were 5135 (46.4%) and 5943 (53.6%) were on Direct Oral Anticoagulants (DOAC). Using Multi-Gate Mixture of Experts, a cross-validated AUC of 0.779 ± 0.016 and 0.745 ± 0.022 were obtained, respectively, for the prediction of all-cause death and CV-death in the overall population. The best ML model outperformed CHADSVASC and HAS-BLED for all-cause death prediction (p < 0.001 for both). When compared to HAS-BLED, Gradient Boosting improved major bleeding prediction in DOACs patients (0.711 vs. 0.586, p < 0.001). A very low number of events during follow-up (52) resulted in a suboptimal ischemic stroke prediction (best AUC of 0.606 ± 0.117 in overall population). Body mass index, age, renal function, platelet count and hemoglobin levels resulted the most important variables for ML prediction.
In AF patients, ML models showed good discriminative ability to predict all-cause death, regardless of the type of anticoagulation strategy, and major bleeding on DOAC therapy, outperforming CHADSVASC and the HAS-BLED scores for risk prediction in these populations.
目前用于预测房颤(AF)患者临床结局的预测工具准确性仍不高。机器学习(ML)已被用于预测 AF 人群的结局,但尚未用于完全接受抗凝治疗的人群。
本研究应用不同的监督式 ML 模型预测接受抗凝治疗的 AF 患者的全因死亡、心血管(CV)死亡、大出血和卒中,处理数据来自多中心 START-2 注册。
共纳入 11078 例 AF 患者(男性 n=6029,54.3%),中位随访时间为 1.5 年[IQR 1.0-2.6]。服用维生素 K 拮抗剂(VKA)的患者 5135 例(46.4%),直接口服抗凝剂(DOAC)的患者 5943 例(53.6%)。使用多门混合专家模型,在整个人群中,全因死亡和 CV 死亡的预测的交叉验证 AUC 分别为 0.779±0.016 和 0.745±0.022。对于全因死亡预测,最佳 ML 模型优于 CHADSVASC 和 HAS-BLED(均 p<0.001)。与 HAS-BLED 相比,梯度提升在 DOAC 患者的大出血预测中得到改善(0.711 比 0.586,p<0.001)。随访期间事件数量很少(52 例)导致缺血性卒中预测效果不佳(整体人群最佳 AUC 为 0.606±0.117)。体重指数、年龄、肾功能、血小板计数和血红蛋白水平是 ML 预测最重要的变量。
在 AF 患者中,ML 模型对于预测全因死亡具有良好的区分能力,无论抗凝策略类型如何,并且对于 DOAC 治疗的大出血具有良好的预测能力,在这些人群中的风险预测方面优于 CHADSVASC 和 HAS-BLED 评分。