Suppr超能文献

基于智能手机的居家自闭症研究中的注视估计。

Smartphone-based gaze estimation for in-home autism research.

机构信息

Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, California, USA.

Google Research, Mountain View, California, USA.

出版信息

Autism Res. 2024 Jun;17(6):1140-1148. doi: 10.1002/aur.3140. Epub 2024 Apr 25.

Abstract

Atypical gaze patterns are a promising biomarker of autism spectrum disorder. To measure gaze accurately, however, it typically requires highly controlled studies in the laboratory using specialized equipment that is often expensive, thereby limiting the scalability of these approaches. Here we test whether a recently developed smartphone-based gaze estimation method could overcome such limitations and take advantage of the ubiquity of smartphones. As a proof-of-principle, we measured gaze while a small sample of well-assessed autistic participants and controls watched videos on a smartphone, both in the laboratory (with lab personnel) and in remote home settings (alone). We demonstrate that gaze data can be efficiently collected, in-home and longitudinally by participants themselves, with sufficiently high accuracy (gaze estimation error below 1° visual angle on average) for quantitative, feature-based analysis. Using this approach, we show that autistic individuals have reduced gaze time on human faces and longer gaze time on non-social features in the background, thereby reproducing established findings in autism using just smartphones and no additional hardware. Our approach provides a foundation for scaling future research with larger and more representative participant groups at vastly reduced cost, also enabling better inclusion of underserved communities.

摘要

非典型注视模式是自闭症谱系障碍的一个有前途的生物标志物。然而,为了准确测量注视,通常需要在实验室中使用专门设备进行高度受控的研究,而这些设备往往价格昂贵,从而限制了这些方法的可扩展性。在这里,我们测试了一种基于智能手机的新注视估计方法是否可以克服这些限制,并利用智能手机的普及性。作为一个原理验证,我们在一个小的自闭症参与者和对照组样本中测量了注视,他们在智能手机上观看视频,包括实验室(有实验室人员)和远程家庭环境(独自)。我们证明,通过参与者自己,在家中并进行纵向测量,可以高效地收集注视数据,其准确性足够高(平均注视估计误差低于 1°视角),可进行定量的、基于特征的分析。使用这种方法,我们发现自闭症患者在观看人脸时的注视时间减少,而在背景中的非社交特征上的注视时间延长,从而仅使用智能手机和无其他硬件重现了自闭症中的既定发现。我们的方法为使用更大和更具代表性的参与者群体进行未来研究提供了基础,同时降低了成本,也使服务不足的社区能够更好地参与进来。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验