Suppr超能文献

基于人工智能的人体测量分析:使用高分辨率网络的自动 3D 口周标志点检测。

Automated 3D Perioral Landmark Detection Using High-Resolution Network: Artificial Intelligence-based Anthropometric Analysis.

出版信息

Aesthet Surg J. 2024 Jul 15;44(8):NP606-NP612. doi: 10.1093/asj/sjae103.

Abstract

BACKGROUND

Three-dimensional facial stereophotogrammetry, a convenient, noninvasive and highly reliable evaluation tool, has in recent years shown great potential in plastic surgery for preoperative planning and evaluating treatment efficacy. However, it requires manual identification of facial landmarks by trained evaluators to obtain anthropometric data, which takes much time and effort. Automatic 3D facial landmark localization has the potential to facilitate fast data acquisition and eliminate evaluator error.

OBJECTIVES

The aim of this work was to describe a novel deep-learning method based on dimension transformation and key-point detection for automated 3D perioral landmark annotation.

METHODS

After transforming a 3D facial model into 2D images, High-Resolution Network is implemented for key-point detection. The 2D coordinates of key points are then mapped back to the 3D model using mathematical methods to obtain the 3D landmark coordinates. This program was trained with 120 facial models and validated in 50 facial models.

RESULTS

Our approach achieved a satisfactory mean [standard deviation] accuracy of 1.30 [0.68] mm error in landmark detection with a mean processing time of 5.2 [0.21] seconds per model. Subsequent analysis based on these landmarks showed mean errors of 0.87 [1.02] mm for linear measurements and 5.62° [6.61°] for angular measurements.

CONCLUSIONS

This automated 3D perioral landmarking method could serve as an effective tool that enables fast and accurate anthropometric analysis of lip morphology for plastic surgery and aesthetic procedures.

摘要

背景

三维面部体层摄影术作为一种方便、非侵入性且高度可靠的评估工具,近年来在整形手术的术前规划和评估治疗效果方面显示出巨大的潜力。然而,它需要经过培训的评估人员手动识别面部标志点来获取人体测量数据,这需要花费大量的时间和精力。自动 3D 面部标志点定位具有促进快速数据采集和消除评估者误差的潜力。

目的

本研究旨在描述一种基于维度变换和关键点检测的新型深度学习方法,用于自动 3D 口周标志点注释。

方法

将 3D 面部模型转换为 2D 图像后,使用高分辨率网络进行关键点检测。然后,使用数学方法将关键点的 2D 坐标映射回 3D 模型,以获得 3D 标志点坐标。该程序在 120 个面部模型上进行了训练,并在 50 个面部模型上进行了验证。

结果

我们的方法在标志点检测方面取得了令人满意的平均[标准差]精度,为 1.30[0.68]mm 的误差,平均处理每个模型的时间为 5.2[0.21]秒。基于这些标志点的后续分析显示,线性测量的平均误差为 0.87[1.02]mm,角度测量的平均误差为 5.62°[6.61°]。

结论

这种自动 3D 口周标志点定位方法可以作为一种有效的工具,用于快速准确地分析唇部形态的人体测量数据,为整形手术和美容程序提供参考。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验