Suppr超能文献

伴有 BRAF V600E 突变的甲状腺乳头状癌中央区淋巴结转移的在线模型。

An Online Model for Central Lymph Node Metastases in Papillary Thyroid Carcinoma With BRAF V600E Mutation.

机构信息

Department of Thyroid Surgery.

Department of Radiotherapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province.

出版信息

Am J Clin Oncol. 2024 Aug 1;47(8):383-390. doi: 10.1097/COC.0000000000001109. Epub 2024 Apr 24.

Abstract

OBJECTIVE

To construct a predictive model to direct the dissection of the central lymph nodes in papillary thyroid cancer (PTC) with BRAF V600E mutation by identifying the risk variables for central lymph node metastases (CLNM).

METHODS

Data from 466 PTC patients with BRAF V600E mutations underwent thyroid surgery was collected and analyzed retrospectively. For these patients, we conducted univariate and multivariate logistic regression analysis to find risk variables for CLNM. To construct a nomogram, the independent predictors were chosen. The calibration, discrimination, and clinical utility of the predictive model were assessed by training and validation data.

RESULTS

CLNM was present in 323/466 PTC patients with BRAF V600E mutations. By using univariate and multivariate logistic regression, we discovered that gender, age, tumor size, multifocality, and pathological subtype were all independent predictors of CLNM in PTC patients with BRAF V600E mutations. A predictive nomogram was created by combining these variables. In both training and validation groups, the nomogram demonstrated great calibration capacities. The training and validation groups' areas under the curve (AUC) were 0.772 (specificity 0.694, sensitivity 0.728, 95% CI: 0.7195-0.8247) and 0.731 (specificity 0.778, sensitivity 0.653, 95% CI: 0.6386-0.8232) respectively. According to the nomogram's decision curve analysis (DCA), the nomogram might be beneficial. As well, an online dynamic calculator was developed to make the application of this nomogram easier in the clinic.

CONCLUSION

An online nomogram model based on the 5 predictors included gender, age, pathological subtype, multifocality, and tumor size was confirmed to predict CLNM and guide the central lymph nodes dissection in PTC patients with BRAF V600E mutations.

摘要

目的

通过确定中央淋巴结转移(CLNM)的风险变量,构建一个用于指导伴有 BRAF V600E 突变的甲状腺乳头状癌(PTC)中央淋巴结解剖的预测模型。

方法

回顾性收集了 466 例伴有 BRAF V600E 突变的 PTC 患者的甲状腺手术数据并进行分析。对这些患者进行单因素和多因素逻辑回归分析,以确定 CLNM 的风险变量。为了构建一个列线图,选择了独立的预测因子。通过训练和验证数据评估预测模型的校准、区分和临床实用性。

结果

在 466 例伴有 BRAF V600E 突变的 PTC 患者中,有 323 例存在 CLNM。通过单因素和多因素逻辑回归,我们发现性别、年龄、肿瘤大小、多灶性和病理亚型均是伴有 BRAF V600E 突变的 PTC 患者 CLNM 的独立预测因子。通过结合这些变量创建了一个预测列线图。在训练和验证组中,该列线图均表现出很好的校准能力。训练和验证组的曲线下面积(AUC)分别为 0.772(特异性 0.694,敏感性 0.728,95%CI:0.7195-0.8247)和 0.731(特异性 0.778,敏感性 0.653,95%CI:0.6386-0.8232)。根据列线图的决策曲线分析(DCA),该列线图可能有益。此外,还开发了一个在线动态计算器,以方便在临床上应用该列线图。

结论

基于 5 个预测因子(性别、年龄、病理亚型、多灶性和肿瘤大小)的在线列线图模型被证实可用于预测伴有 BRAF V600E 突变的 PTC 患者的 CLNM,并指导中央淋巴结清扫。

相似文献

1
An Online Model for Central Lymph Node Metastases in Papillary Thyroid Carcinoma With BRAF V600E Mutation.
Am J Clin Oncol. 2024 Aug 1;47(8):383-390. doi: 10.1097/COC.0000000000001109. Epub 2024 Apr 24.
2
Development of a nomogram incorporating BRAF-V600E to predict central lymph node metastasis in papillary thyroid carcinoma.
Clin Hemorheol Microcirc. 2025 Feb;89(2):225-231. doi: 10.1177/13860291241293558. Epub 2025 Feb 13.
4
Predictors and a Prediction Model for Central Cervical Lymph Node Metastasis in Papillary Thyroid Carcinoma (cN0).
Front Endocrinol (Lausanne). 2022 Jan 27;12:789310. doi: 10.3389/fendo.2021.789310. eCollection 2021.
5
Risk factors for central lymph node metastasis in patients with papillary thyroid carcinoma: a retrospective study.
Front Endocrinol (Lausanne). 2023 Nov 17;14:1288527. doi: 10.3389/fendo.2023.1288527. eCollection 2023.
6
8
Prediction Model of Cervical Lymph Node Metastasis in Papillary Thyroid Carcinoma.
Cancer Control. 2024 Jan-Dec;31:10732748241295347. doi: 10.1177/10732748241295347.

引用本文的文献

1
Precision of predictive nomograms for lymph node metastasis of thyroid cancer from Chinese real-world study: a systematic review and meta-analysis.
Front Endocrinol (Lausanne). 2025 Jul 9;16:1617563. doi: 10.3389/fendo.2025.1617563. eCollection 2025.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验