Iñesta Álvaro G, Vardoyan Gayane, Scavuzzo Lara, Wehner Stephanie
QuTech, Delft University of Technology, Delft, The Netherlands.
EEMCS, Delft University of Technology, Delft, The Netherlands.
npj Quantum Inf. 2023;9(1):46. doi: 10.1038/s41534-023-00713-9. Epub 2023 May 6.
We study the limits of bipartite entanglement distribution using a chain of quantum repeaters that have quantum memories. To generate end-to-end entanglement, each node can attempt the generation of an entangled link with a neighbor, or perform an entanglement swapping measurement. A maximum storage time, known as cutoff, is enforced on the memories to ensure high-quality entanglement. Nodes follow a policy that determines when to perform each operation. Global-knowledge policies take into account all the information about the entanglement already produced. Here, we find global-knowledge policies that minimize the expected time to produce end-to-end entanglement. Our methods are based on Markov decision processes and value and policy iteration. We compare optimal policies to a policy in which nodes only use local information. We find that the advantage in expected delivery time provided by an optimal global-knowledge policy increases with increasing number of nodes and decreasing probability of successful swapping.
我们使用具有量子存储器的量子中继器链来研究二分纠缠分布的极限。为了生成端到端纠缠,每个节点可以尝试与邻居生成纠缠链路,或者执行纠缠交换测量。对存储器施加一个称为截止的最大存储时间,以确保高质量的纠缠。节点遵循一种策略,该策略决定何时执行每个操作。全局知识策略会考虑已经产生的关于纠缠的所有信息。在这里,我们找到了能使产生端到端纠缠的预期时间最小化的全局知识策略。我们的方法基于马尔可夫决策过程以及值迭代和策略迭代。我们将最优策略与节点仅使用局部信息的策略进行比较。我们发现,最优全局知识策略在预期交付时间上的优势会随着节点数量的增加和成功交换概率的降低而增加。