Tan Hengxin, Li Yongkang, Liu Yizhou, Kaplan Daniel, Wang Ziqiang, Yan Binghai
Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, 7610001 Israel.
Department of Physics, Boston College, Chestnut Hill, MA 02467 USA.
NPJ Quantum Mater. 2023;8(1):39. doi: 10.1038/s41535-023-00571-w. Epub 2023 Jul 28.
The recently discovered kagome materials VSb ( = K, Rb, Cs) attract intense research interest in intertwined topology, superconductivity, and charge density waves (CDW). Although the in-plane 2 × 2 CDW is well studied, its out-of-plane structural correlation with the Fermi surface properties is less understood. In this work, we advance the theoretical description of quantum oscillations and investigate the Fermi surface properties in the three-dimensional CDW phase of CsVSb. We derived Fermi-energy-resolved and layer-resolved quantum orbits that agree quantitatively with recent experiments in the fundamental frequency, cyclotron mass, and topology. We reveal a complex Dirac nodal network that would lead to a Berry phase of a quantum orbit in the spinless case. However, the phase shift of topological quantum orbits is contributed by the orbital moment and Zeeman effect besides the Berry phase in the presence of spin-orbital coupling (SOC). Therefore, we can observe topological quantum orbits with a phase shift in otherwise trivial orbits without SOC, contrary to common perception. Our work reveals the rich topological nature of kagome materials and paves a path to resolve different topological origins of quantum orbits.
最近发现的 Kagome 材料 VSb(=K、Rb、Cs)在交织拓扑、超导和电荷密度波(CDW)方面引发了强烈的研究兴趣。尽管面内 2×2 CDW 已得到充分研究,但其与费米面性质的面外结构相关性却鲜为人知。在这项工作中,我们推进了量子振荡的理论描述,并研究了 CsVSb 三维 CDW 相中的费米面性质。我们推导了与近期实验在基频、回旋质量和拓扑结构上定量相符的费米能分辨和层分辨量子轨道。我们揭示了一个复杂的狄拉克节点网络,在无自旋情况下,它会导致量子轨道的贝里相位。然而,在存在自旋轨道耦合(SOC)的情况下,除了贝里相位外,拓扑量子轨道的相移还由轨道矩和塞曼效应贡献。因此,与通常的认知相反,我们可以在没有 SOC 的平凡轨道中观察到具有相移的拓扑量子轨道。我们的工作揭示了 Kagome 材料丰富的拓扑性质,并为解决量子轨道的不同拓扑起源铺平了道路。