Ariyarathna Isuru R
Physics and Chemistry of Materials (T-1), Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
Phys Chem Chem Phys. 2024 Jun 19;26(24):16989-16997. doi: 10.1039/d4cp00723a.
Density functional theory (DFT) and electron propagator theory (EPT) calculations were performed to study ground and excited electronic structures of alkali-metal (M) coordinated 9-crown-3, 24-crown-8, [2.1.1]cryptand, -Me-1.1.1, and 3Adamanzane complexes. Each complex bears an expanded electron in the periphery and occupies diffuse 1p-, 1d-, 1f-type molecular orbitals (or superatomic 1P, 1D, 1F orbitals) in excited electronic states. The calculated superatomic shell model of the M(9-crown-3) is 1S, 1P, 1D, 1F, 2S, 2P, 2D, 1G and it is held by all other complexes up to the studied 1F level. Due to the highly diffuse nature of the electron, the ionization energies of these complexes are significantly lower (1.6-2.0 eV) and hence these complexes belong to the superalkali category. The EPT ionization energy and the excitation energies of the Li(9-crown-3) were used to evaluate DFT errors associated with a series of exchange correlation functionals that span multiple rungs of Jacob's ladder (, GGA, meta-GGA, global GGA hybrid, meta-GGA hybrid, range-separated hybrid, double-hybrid). Among these, the best performing functional is the range-separated hybrid CAM-B3LYP and the errors are within 6% of high-level EPT results. The accuracy of CAM-B3LYP is indeed transferable to similar complexes and hence the findings are expected to accelerate the progression of studies of Rydberg-type systems.
进行了密度泛函理论(DFT)和电子传播子理论(EPT)计算,以研究碱金属(M)配位的9-冠-3、24-冠-8、[2.1.1]穴醚、-Me-1.1.1和3-金刚烷胺配合物的基态和激发态电子结构。每个配合物在外围带有一个扩展电子,并在激发电子态中占据弥散的1p-、1d-、1f型分子轨道(或超原子1P、1D、1F轨道)。计算得到的M(9-冠-3)的超原子壳层模型为1S、1P、1D、1F、2S、2P、2D、1G,并且所有其他配合物在研究的1F能级之前都保持这种模型。由于电子具有高度弥散的性质,这些配合物的电离能显著较低(1.6 - 2.0 eV),因此这些配合物属于超碱类别。利用Li(9-冠-3)的EPT电离能和激发能来评估与一系列跨越雅各布天梯多个梯级的交换相关泛函(、GGA、meta-GGA、全局GGA杂化、meta-GGA杂化、范围分离杂化、双杂化)相关的DFT误差。其中,表现最佳的泛函是范围分离杂化的CAM-B3LYP,误差在高水平EPT结果的6%以内。CAM-B3LYP的准确性确实可以转移到类似的配合物上,因此这些发现有望加速里德堡型体系研究的进展。