Department of Life Technologies, University of Turku, FIN20014 Turku, Finland.
Molecular Biotechnology, Leiden University, PO Box 9505, 2300RA Leiden, The Netherlands.
ACS Chem Biol. 2024 May 17;19(5):1131-1141. doi: 10.1021/acschembio.4c00082. Epub 2024 Apr 26.
Angucyclines are an important group of microbial natural products that display tremendous chemical diversity. Classical angucyclines are composed of a tetracyclic benz[]anthracene scaffold with one ring attached at an angular orientation. However, in atypical angucyclines, the polyaromatic aglycone is cleaved at A-, B-, or C-rings, leading to structural rearrangements and enabling further chemical variety. Here, we have elucidated the branching points in angucycline biosynthesis leading toward cleavage of the C-ring in lugdunomycin and thioangucycline biosynthesis. We showed that 12-hydroxylation and 6-ketoreduction of UWM6 are shared steps in classical and C-ring-cleaved angucycline pathways, although the bifunctional 6-ketoreductase LugOIIred harbors additional unique 1-ketoreductase activity. We identified formation of the key intermediate 8--methyltetrangomycin by the LugN methyltransferase as the branching point toward C-ring-cleaved angucyclines. The final common step in lugdunomycin and thioangucycline biosynthesis is quinone reduction, catalyzed by the 7-ketoreductases LugG and TacO, respectively. In turn, the committing step toward thioangucyclines is 12-ketoreduction catalyzed by TacA, for which no orthologous protein exists on the lugdunomycin pathway. Our results confirm that quinone reductions are early tailoring steps and, therefore, may be mechanistically important for subsequent C-ring cleavage. Finally, many of the tailoring enzymes harbored broad substrate promiscuity, which we utilized in combinatorial enzymatic syntheses to generate the angucyclines SM 196 A and hydranthomycin. We propose that enzyme promiscuity and the competition of many of the enzymes for the same substrates lead to a branching biosynthetic network and formation of numerous shunt products typical for angucyclines rather than a canonical linear metabolic pathway.
安格环素是一类重要的微生物天然产物,具有巨大的化学多样性。经典的安格环素由四环苯并[g,h,i]色烯骨架组成,一个环以角向方式连接。然而,在非典型安格环素中,多芳烃糖苷部分在 A、B 或 C 环处裂解,导致结构重排,并产生更多的化学多样性。在这里,我们阐明了导致卢格霉素和硫安格环素生物合成中环 C 裂解的安格环素生物合成中的分支点。我们表明,UWM6 的 12-羟化和 6-酮还原是经典和 C 环裂解的安格环素途径中的共享步骤,尽管双功能 6-酮还原酶 LugOIIred 还具有额外的独特 1-酮还原酶活性。我们确定 LugN 甲基转移酶形成关键中间体 8--甲基四氢安格环素是 C 环裂解的安格环素途径的分支点。卢格霉素和硫安格环素生物合成的最后一个共同步骤是醌还原,分别由 7-酮还原酶 LugG 和 TacO 催化。反过来,硫安格环素生成的关键步骤是 TacA 催化的 12-酮还原,而 Lugdunomycin 途径中没有同源蛋白。我们的结果证实,醌还原是早期的修饰步骤,因此可能对随后的 C 环裂解具有机制上的重要性。最后,许多修饰酶具有广泛的底物混杂性,我们利用组合酶合成来生成安格环素 SM 196 A 和水兰霉素。我们提出,酶混杂性和许多酶对相同底物的竞争导致分支生物合成网络的形成和安格环素典型的众多支路产物的形成,而不是典型的线性代谢途径。