Roohi Reza, Abedi Elahe, Hashemi Seyed Mohammad Bagher, Akbari Masoud
Department of Mechanical Engineering, Faculty of Engineering, Fasa University, Fasa, Iran.
Department of Food Science and Technology, Faculty of Agriculture, Fasa University, Fasa, Iran.
Ultrason Sonochem. 2024 Jun;106:106882. doi: 10.1016/j.ultsonch.2024.106882. Epub 2024 Apr 20.
Present study investigates the effects of probe size geometry on thermodynamic kinetics, rheology, and microstructure of wheat and tapioca starch. Ultrasound treatment using different probe diameters (20 mm and 100 mm) significantly influenced the gelatinization process. Results showed reduced enthalpy (ΔH) and Gibbs energy (ΔG), indicating enhanced gelatinization efficiency. According to the results, using a 20 mm and 100 mm probe leads to a reduction of 52.7 % and 68.6 % in reaction enthalpy for wheat starch compared to native starch, respectively. Microstructure analysis revealed structural changes, with ultrasound treatment leading to granular fractures and a sheet-like structure with air bubbles. The rheological behavior of the starches is found to exhibit shear thinning behavior, with the Casson model providing the best fit for the experimental data. Moreover, rheology modeling using Herschel-Bulkley and power law models showed increased viscosity and shear stress in larger probes. Numerical simulation data demonstrated that probe size influenced ultrasonic pressure, sound pressure level, and thermal power dissipation density, affecting fluid motion and velocity field components. Moreover, the maximum dissipated power decreases from 8.43 to 0.655 mW/m with an increase in probe diameter from 20 to 100 mm. The average yield shear stress values are calculated as 3.36 and 3.14 for wheat and tapioca starches, respectively. The larger probe diameter leads to greater entropy increases, with tapioca starch showing a 4.72 % increase and wheat starch a 4.97 % increase, compared to 2.56 % and 3.11 %, respectively, with the smaller probe. Additionally, the Keller-Miksis model provided insights into bubble dynamics, revealing increased pressure and temperature with higher pressure amplitudes.
本研究调查了探头尺寸几何形状对小麦淀粉和木薯淀粉的热力学动力学、流变学及微观结构的影响。使用不同探头直径(20毫米和100毫米)的超声处理对糊化过程有显著影响。结果显示焓变(ΔH)和吉布斯自由能(ΔG)降低,表明糊化效率提高。根据结果,与天然淀粉相比,使用20毫米和100毫米探头分别使小麦淀粉的反应焓降低了52.7%和68.6%。微观结构分析揭示了结构变化,超声处理导致颗粒破裂并形成带有气泡的片状结构。发现淀粉的流变行为表现出剪切变稀行为,Casson模型对实验数据拟合最佳。此外,使用Herschel-Bulkley模型和幂律模型进行的流变学建模表明,较大探头中的粘度和剪切应力增加。数值模拟数据表明,探头尺寸影响超声压力、声压级和热功耗散密度,进而影响流体运动和速度场分量。此外,随着探头直径从20毫米增加到100毫米,最大耗散功率从8.43毫瓦/米降至0.655毫瓦/米。小麦淀粉和木薯淀粉的平均屈服剪切应力值分别计算为3.36和3.14。较大的探头直径导致熵增加更大,与较小探头相比,木薯淀粉增加了4.72%,小麦淀粉增加了4.97%,而较小探头分别为2.56%和3.11%。此外,Keller-Miksis模型提供了对气泡动力学的见解,揭示了压力振幅越高,压力和温度越高。