Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China.
State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, School of Environmental Studies, Wuhan 430078, China.
Environ Sci Technol. 2024 May 7;58(18):8032-8042. doi: 10.1021/acs.est.4c00267. Epub 2024 Apr 26.
Accumulation of geogenic phosphorus (P) in groundwater is an emerging environmental concern, which is closely linked to coupled processes involving FeOOH and organic matter under methanogenic conditions. However, it remains unclear how P enrichment is associated with methane cycling, particularly the anaerobic methane oxidation (AMO). This study conducted a comprehensive investigation of carbon isotopes in dissolved inorganic carbon (DIC), CO, and CH, alongside Fe isotopes, microbial communities, and functions in quaternary aquifers of the central Yangtze River plain. The study found that P concentrations tended to increase with Fe(II) concentrations, δFe, and δC-DIC, suggesting P accumulation due to the reductive dissolution of FeOOH under methanogenic conditions. The positive correlations of gene abundance versus δC-CH and Fe concentrations versus δC-CH, and the prevalent presence of , jointly demonstrated the potential significance of Fe(III)-mediated AMO process (Fe-AMO) alongside traditional methanogenesis. The increase of P concentration with δC-CH value, gene abundance, and Fe concentration suggested that the Fe-AMO process facilitated P enrichment in groundwater. Redundancy analysis confirmed this assertion, identifying P concentration as the primary determinant and the cooperative influence of Fe-AMO microorganisms such as and on P enrichment. Our work provided new insights into P dynamics in subsurface environments.
地下水地球成因磷(P)的积累是一个新出现的环境问题,它与产甲烷条件下涉及 FeOOH 和有机物的耦合过程密切相关。然而,P 富集与甲烷循环特别是厌氧甲烷氧化(AMO)的关系仍不清楚。本研究对长江中下游平原第四系含水层中溶解无机碳(DIC)、CO 和 CH 的碳同位素、Fe 同位素、微生物群落及其功能进行了综合调查。研究发现,P 浓度随 Fe(II)浓度、δFe 和 δC-DIC 的增加而增加,表明 P 的积累是由于产甲烷条件下 FeOOH 的还原溶解所致。基因丰度与 δC-CH 以及 Fe 浓度与 δC-CH 的正相关,以及 的普遍存在,共同证明了 Fe(III)介导的 AMO 过程(Fe-AMO)与传统的甲烷生成过程同样具有重要意义。P 浓度随 δC-CH 值、基因丰度和 Fe 浓度的增加而增加,表明 Fe-AMO 过程促进了地下水中 P 的富集。冗余分析证实了这一观点,确定 P 浓度是主要决定因素,Fe-AMO 微生物如 和 对 P 富集的协同影响。我们的工作为地下环境中 P 动态提供了新的见解。