Liu Yi-Wen, Zhuang Yu-Chen, Ren Ya-Ning, Yan Chao, Zhou Xiao-Feng, Yang Qian, Sun Qing-Feng, He Lin
Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, 100875, Beijing, China.
Key Laboratory of Multiscale Spin Physics, Ministry of Education, 100875, Beijing, China.
Nat Commun. 2024 Apr 26;15(1):3546. doi: 10.1038/s41467-024-47756-w.
Phase singularities are phase-indeterminate points where wave amplitudes are zero, which manifest as phase vertices or wavefront dislocations. In the realm of optical and electron beams, the phase singularity has been extensively explored, demonstrating a profound connection to orbital angular momentum. Direct local imaging of the impact of orbital angular momentum on phase singularities at the nanoscale, however, remains challenging. Here, we study the role of orbital angular momentum in phase singularities in graphene, particularly at the atomic level, through scanning tunneling microscopy and spectroscopy. Our experiments demonstrate that the scatterings between different orbital angular momentum states, which are induced by local rotational symmetry-breaking potentials, can generate additional phase singularities, and result in robust single-wavefront dislocations in real space. Our results pave the way for exploring the effects of orbital degree of freedom on quantum phases in quasiparticle interference processes.
相位奇点是波幅为零的相位不确定点,表现为相位顶点或波前位错。在光学和电子束领域,相位奇点已得到广泛研究,显示出与轨道角动量有着深刻联系。然而,在纳米尺度下直接对轨道角动量对相位奇点的影响进行局部成像仍具有挑战性。在此,我们通过扫描隧道显微镜和光谱学研究了轨道角动量在石墨烯相位奇点中的作用,特别是在原子层面。我们的实验表明,由局部旋转对称性破缺势诱导的不同轨道角动量态之间的散射可产生额外的相位奇点,并在实空间中导致稳健的单波前位错。我们的结果为探索准粒子干涉过程中轨道自由度对量子相的影响铺平了道路。