三羧酸循环对代谢程序、氧化还原系统及表观遗传重塑的调控与骨骼健康和疾病

Tricarboxylic Acid Cycle Regulation of Metabolic Program, Redox System, and Epigenetic Remodeling for Bone Health and Disease.

作者信息

Lian Wei-Shiung, Wu Re-Wen, Lin Yu-Han, Chen Yu-Shan, Jahr Holger, Wang Feng-Sheng

机构信息

Core Laboratory for Phenomics and Diagnostic, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan.

Center for Mitochondrial Research and Medicine, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan.

出版信息

Antioxidants (Basel). 2024 Apr 17;13(4):470. doi: 10.3390/antiox13040470.

Abstract

Imbalanced osteogenic cell-mediated bone gain and osteoclastic remodeling accelerates the development of osteoporosis, which is the leading risk factor of disability in the elderly. Harmonizing the metabolic actions of bone-making cells and bone resorbing cells to the mineralized matrix network is required to maintain bone mass homeostasis. The tricarboxylic acid (TCA) cycle in mitochondria is a crucial process for cellular energy production and redox homeostasis. The canonical actions of TCA cycle enzymes and intermediates are indispensable in oxidative phosphorylation and adenosine triphosphate (ATP) biosynthesis for osteogenic differentiation and osteoclast formation. Knockout mouse models identify these enzymes' roles in bone mass and microarchitecture. In the noncanonical processes, the metabolites as a co-factor or a substrate involve epigenetic modification, including histone acetyltransferases, DNA demethylases, RNA m6A demethylases, and histone demethylases, which affect genomic stability or chromatin accessibility for cell metabolism and bone formation and resorption. The genetic manipulation of these epigenetic regulators or TCA cycle intermediate supplementation compromises age, estrogen deficiency, or inflammation-induced bone mass loss and microstructure deterioration. This review sheds light on the metabolic functions of the TCA cycle in terms of bone integrity and highlights the crosstalk of the TCA cycle and redox and epigenetic pathways in skeletal tissue metabolism and the intermediates as treatment options for delaying osteoporosis.

摘要

成骨细胞介导的骨量增加与破骨细胞重塑失衡会加速骨质疏松症的发展,而骨质疏松症是老年人残疾的主要风险因素。需要使造骨细胞和骨吸收细胞对矿化基质网络的代谢作用协调一致,以维持骨量稳态。线粒体中的三羧酸(TCA)循环是细胞能量产生和氧化还原稳态的关键过程。TCA循环酶和中间体的典型作用在成骨分化和破骨细胞形成的氧化磷酸化和三磷酸腺苷(ATP)生物合成中不可或缺。基因敲除小鼠模型确定了这些酶在骨量和微结构中的作用。在非典型过程中,作为辅助因子或底物的代谢物参与表观遗传修饰,包括组蛋白乙酰转移酶、DNA去甲基化酶、RNA m6A去甲基化酶和组蛋白去甲基化酶,这些修饰会影响基因组稳定性或染色质可及性,从而影响细胞代谢以及骨形成和吸收。对这些表观遗传调节因子进行基因操作或补充TCA循环中间体,可以缓解年龄、雌激素缺乏或炎症引起的骨量流失和微结构恶化。本综述阐述了TCA循环在骨完整性方面的代谢功能,并强调了TCA循环与氧化还原和表观遗传途径在骨骼组织代谢中的相互作用,以及中间体作为延缓骨质疏松症的治疗选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee48/11047415/6d5517cf45e9/antioxidants-13-00470-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索