Suppr超能文献

推进手术性心律失常消融:关于3D打印应用和两种生物相容性材料的新见解

Advancing Surgical Arrhythmia Ablation: Novel Insights on 3D Printing Applications and Two Biocompatible Materials.

作者信息

Monaco Cinzia, Kronenberger Rani, Talevi Giacomo, Pannone Luigi, Cappello Ida Anna, Candelari Mara, Ramak Robbert, Della Rocca Domenico Giovanni, Bori Edoardo, Terryn Herman, Baert Kitty, Laha Priya, Krasniqi Ahmet, Gharaviri Ali, Bala Gezim, Chierchia Gian Battista, La Meir Mark, Innocenti Bernardo, de Asmundis Carlo

机构信息

Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, European Reference Networks Guard-Heart, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, 1050 Brussels, Belgium.

Cardiac Surgery Department, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, 1050 Brussels, Belgium.

出版信息

Biomedicines. 2024 Apr 15;12(4):869. doi: 10.3390/biomedicines12040869.

Abstract

To date, studies assessing the safety profile of 3D printing materials for application in cardiac ablation are sparse. Our aim is to evaluate the safety and feasibility of two biocompatible 3D printing materials, investigating their potential use for intra-procedural guides to navigate surgical cardiac arrhythmia ablation. Herein, we 3D printed various prototypes in varying thicknesses (0.8 mm-3 mm) using a resin (MED625FLX) and a thermoplastic polyurethane elastomer (TPU95A). Geometrical testing was performed to assess the material properties pre- and post-sterilization. Furthermore, we investigated the thermal propagation behavior beneath the 3D printing materials during cryo-energy and radiofrequency ablation using an in vitro wet-lab setup. Moreover, electron microscopy and Raman spectroscopy were performed on biological tissue that had been exposed to the 3D printing materials to assess microparticle release. Post-sterilization assessments revealed that MED625FLX at thicknesses of 1 mm, 2.5 mm, and 3 mm, along with TPU95A at 1 mm and 2.5 mm, maintained geometrical integrity. Thermal analysis revealed that material type, energy source, and their factorial combination with distance from the energy source significantly influenced the temperatures beneath the 3D-printed material. Electron microscopy revealed traces of nitrogen and sulfur underneath the MED625FLX prints (1 mm, 2.5 mm) after cryo-ablation exposure. The other samples were uncontaminated. While Raman spectroscopy did not detect material release, further research is warranted to better understand these findings for application in clinical settings.

摘要

迄今为止,评估用于心脏消融的3D打印材料安全性的研究很少。我们的目的是评估两种生物相容性3D打印材料的安全性和可行性,研究它们在手术性心脏心律失常消融术中作为术中引导的潜在用途。在此,我们使用一种树脂(MED625FLX)和一种热塑性聚氨酯弹性体(TPU95A)3D打印了各种不同厚度(0.8毫米至3毫米)的原型。进行了几何测试以评估灭菌前后的材料性能。此外,我们使用体外湿实验室装置研究了在冷冻能量和射频消融过程中3D打印材料下方的热传播行为。此外,对暴露于3D打印材料的生物组织进行了电子显微镜和拉曼光谱分析,以评估微粒释放情况。灭菌后评估显示,厚度为1毫米、2.5毫米和3毫米的MED625FLX以及厚度为1毫米和2.5毫米的TPU95A保持了几何完整性。热分析表明,材料类型、能量源以及它们与能量源距离的因子组合对3D打印材料下方的温度有显著影响。电子显微镜显示,冷冻消融暴露后,MED625FLX打印物(1毫米、2.5毫米)下方有氮和硫的痕迹。其他样品未受污染。虽然拉曼光谱未检测到材料释放,但仍需要进一步研究以更好地理解这些发现,以便应用于临床环境。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47b5/11048352/32a263832b40/biomedicines-12-00869-g001.jpg

相似文献

3
Temperature analysis of 3D-printed biomaterials during unipolar and bipolar radiofrequency ablation procedure.
Front Cardiovasc Med. 2022 Sep 14;9:978333. doi: 10.3389/fcvm.2022.978333. eCollection 2022.
4
Development of a 3D printed surgical guide for Brugada syndrome substrate ablation.
Front Cardiovasc Med. 2022 Nov 15;9:1029685. doi: 10.3389/fcvm.2022.1029685. eCollection 2022.
5
Influence of 3D-printing method, resin material, and sterilization on the accuracy of virtually designed surgical implant guides.
J Prosthet Dent. 2022 Aug;128(2):196-204. doi: 10.1016/j.prosdent.2020.08.038. Epub 2021 Feb 8.
6
3D printing and characterization of a soft and biostable elastomer with high flexibility and strength for biomedical applications.
J Mech Behav Biomed Mater. 2020 Apr;104:103649. doi: 10.1016/j.jmbbm.2020.103649. Epub 2020 Jan 23.
7
Effect of Printing Layer Thickness and Postprinting Conditions on the Flexural Strength and Hardness of a 3D-Printed Resin.
Biomed Res Int. 2022 Feb 21;2022:8353137. doi: 10.1155/2022/8353137. eCollection 2022.
10
Assessment of Staphylococcus Aureus growth on biocompatible 3D printed materials.
3D Print Med. 2023 Nov 2;9(1):30. doi: 10.1186/s41205-023-00195-7.

引用本文的文献

本文引用的文献

1
Low temperature vaporized hydrogen peroxide sterilization of 3D printed devices.
3D Print Med. 2024 Feb 28;10(1):6. doi: 10.1186/s41205-024-00206-1.
4
A 3D-printed surgical guide for ischemic scar targeting and ablation.
Front Cardiovasc Med. 2022 Nov 18;9:1029816. doi: 10.3389/fcvm.2022.1029816. eCollection 2022.
5
Development of a 3D printed surgical guide for Brugada syndrome substrate ablation.
Front Cardiovasc Med. 2022 Nov 15;9:1029685. doi: 10.3389/fcvm.2022.1029685. eCollection 2022.
6
Temperature analysis of 3D-printed biomaterials during unipolar and bipolar radiofrequency ablation procedure.
Front Cardiovasc Med. 2022 Sep 14;9:978333. doi: 10.3389/fcvm.2022.978333. eCollection 2022.
7
3D Printed Surgical Guide for Coronary Artery Bypass Graft: Workflow from Computed Tomography to Prototype.
Bioengineering (Basel). 2022 Apr 19;9(5):179. doi: 10.3390/bioengineering9050179.
8
Raman Spectroscopy for Process Analytical Technologies of Pharmaceutical Secondary Manufacturing.
AAPS PharmSciTech. 2018 Dec 17;20(1):1. doi: 10.1208/s12249-018-1201-2.
9
In Vitro Validation of the Lesion Size Index to Predict Lesion Width and Depth After Irrigated Radiofrequency Ablation in a Porcine Model.
JACC Clin Electrophysiol. 2017 Oct;3(10):1126-1135. doi: 10.1016/j.jacep.2017.08.016. Epub 2017 Oct 16.
10
Structural and congenital heart disease interventions: the role of three-dimensional printing.
Neth Heart J. 2017 Feb;25(2):65-75. doi: 10.1007/s12471-016-0942-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验