Monaco Cinzia, Kronenberger Rani, Talevi Giacomo, Pannone Luigi, Cappello Ida Anna, Candelari Mara, Ramak Robbert, Della Rocca Domenico Giovanni, Bori Edoardo, Terryn Herman, Baert Kitty, Laha Priya, Krasniqi Ahmet, Gharaviri Ali, Bala Gezim, Chierchia Gian Battista, La Meir Mark, Innocenti Bernardo, de Asmundis Carlo
Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, European Reference Networks Guard-Heart, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, 1050 Brussels, Belgium.
Cardiac Surgery Department, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, 1050 Brussels, Belgium.
Biomedicines. 2024 Apr 15;12(4):869. doi: 10.3390/biomedicines12040869.
To date, studies assessing the safety profile of 3D printing materials for application in cardiac ablation are sparse. Our aim is to evaluate the safety and feasibility of two biocompatible 3D printing materials, investigating their potential use for intra-procedural guides to navigate surgical cardiac arrhythmia ablation. Herein, we 3D printed various prototypes in varying thicknesses (0.8 mm-3 mm) using a resin (MED625FLX) and a thermoplastic polyurethane elastomer (TPU95A). Geometrical testing was performed to assess the material properties pre- and post-sterilization. Furthermore, we investigated the thermal propagation behavior beneath the 3D printing materials during cryo-energy and radiofrequency ablation using an in vitro wet-lab setup. Moreover, electron microscopy and Raman spectroscopy were performed on biological tissue that had been exposed to the 3D printing materials to assess microparticle release. Post-sterilization assessments revealed that MED625FLX at thicknesses of 1 mm, 2.5 mm, and 3 mm, along with TPU95A at 1 mm and 2.5 mm, maintained geometrical integrity. Thermal analysis revealed that material type, energy source, and their factorial combination with distance from the energy source significantly influenced the temperatures beneath the 3D-printed material. Electron microscopy revealed traces of nitrogen and sulfur underneath the MED625FLX prints (1 mm, 2.5 mm) after cryo-ablation exposure. The other samples were uncontaminated. While Raman spectroscopy did not detect material release, further research is warranted to better understand these findings for application in clinical settings.
迄今为止,评估用于心脏消融的3D打印材料安全性的研究很少。我们的目的是评估两种生物相容性3D打印材料的安全性和可行性,研究它们在手术性心脏心律失常消融术中作为术中引导的潜在用途。在此,我们使用一种树脂(MED625FLX)和一种热塑性聚氨酯弹性体(TPU95A)3D打印了各种不同厚度(0.8毫米至3毫米)的原型。进行了几何测试以评估灭菌前后的材料性能。此外,我们使用体外湿实验室装置研究了在冷冻能量和射频消融过程中3D打印材料下方的热传播行为。此外,对暴露于3D打印材料的生物组织进行了电子显微镜和拉曼光谱分析,以评估微粒释放情况。灭菌后评估显示,厚度为1毫米、2.5毫米和3毫米的MED625FLX以及厚度为1毫米和2.5毫米的TPU95A保持了几何完整性。热分析表明,材料类型、能量源以及它们与能量源距离的因子组合对3D打印材料下方的温度有显著影响。电子显微镜显示,冷冻消融暴露后,MED625FLX打印物(1毫米、2.5毫米)下方有氮和硫的痕迹。其他样品未受污染。虽然拉曼光谱未检测到材料释放,但仍需要进一步研究以更好地理解这些发现,以便应用于临床环境。