Suppr超能文献

使用基于知识的机器学习模型预测(y)pN1期乳腺癌的总体疾病负担

Prediction of Overall Disease Burden in (y)pN1 Breast Cancer Using Knowledge-Based Machine Learning Model.

作者信息

Chun Seok-Joo, Jang Bum-Sup, Choi Hyeon Seok, Chang Ji Hyun, Shin Kyung Hwan

机构信息

Department of Radiation Oncology, Seoul National University Hospital, Seoul 03080, Republic of Korea.

Department of Radiation Oncology, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang 10326, Republic of Korea.

出版信息

Cancers (Basel). 2024 Apr 13;16(8):1494. doi: 10.3390/cancers16081494.

Abstract

BACKGROUND

We aimed to construct an expert knowledge-based Bayesian network (BN) model for assessing the overall disease burden (ODB) in (y)pN1 breast cancer patients and compare ODB across arms of ongoing trials.

METHODS

Utilizing institutional data and expert surveys, we developed a BN model for (y)pN1 breast cancer. Expert-derived probabilities and disability weights for radiotherapy-related benefit (e.g., 7-year disease-free survival [DFS]) and toxicities were integrated into the model. ODB was defined as the sum of disability weights multiplied by probabilities. In silico predictions were conducted for Alliance A011202, PORT-N1, RAPCHEM, and RT-CHARM trials, comparing ODB, 7-year DFS, and side effects.

RESULTS

In the Alliance A011202 trial, 7-year DFS was 80.1% in both arms. Axillary lymph node dissection led to higher clinical lymphedema and ODB compared to sentinel lymph node biopsy with full regional nodal irradiation (RNI). In the PORT-N1 trial, the control arm (whole-breast irradiation [WBI] with RNI or post-mastectomy radiotherapy [PMRT]) had an ODB of 0.254, while the experimental arm (WBI alone or no PMRT) had an ODB of 0.255. In the RAPCHEM trial, the radiotherapy field did not impact the 7-year DFS in ypN1 patients. However, there was a mild ODB increase with a larger irradiation field. In the RT-CHARM trial, we identified factors associated with the major complication rate, which ranged from 18.3% to 22.1%.

CONCLUSIONS

The expert knowledge-based BN model predicted ongoing trial outcomes, validating reported results and assumptions. In addition, the model demonstrated the ODB in different arms, with an emphasis on quality of life.

摘要

背景

我们旨在构建一个基于专家知识的贝叶斯网络(BN)模型,用于评估(y)pN1期乳腺癌患者的总体疾病负担(ODB),并比较正在进行的试验各臂之间的ODB。

方法

利用机构数据和专家调查,我们开发了一个用于(y)pN1期乳腺癌的BN模型。将专家得出的放疗相关获益(如7年无病生存率[DFS])和毒性的概率及残疾权重纳入模型。ODB定义为残疾权重乘以概率的总和。对Alliance A011202、PORT-N1、RAPCHEM和RT-CHARM试验进行了计算机模拟预测,比较了ODB、7年DFS和副作用。

结果

在Alliance A011202试验中,两臂的7年DFS均为80.1%。与前哨淋巴结活检加全区域淋巴结照射(RNI)相比,腋窝淋巴结清扫导致更高的临床淋巴水肿和ODB。在PORT-N1试验中,对照组(全乳照射[WBI]加RNI或乳房切除术后放疗[PMRT])的ODB为0.254,而试验组(单纯WBI或无PMRT)的ODB为0.255。在RAPCHEM试验中,放疗野对ypN1期患者的7年DFS没有影响。然而,照射野越大,ODB略有增加。在RT-CHARM试验中,我们确定了与主要并发症发生率相关的因素,其范围为18.3%至22.1%。

结论

基于专家知识的BN模型预测了正在进行的试验结果,验证了报告的结果和假设。此外,该模型展示了不同臂的ODB,强调了生活质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d56c/11048634/cce7a5551fe8/cancers-16-01494-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验