Suppr超能文献

评估(y)pN1期乳腺癌患者放射治疗的风险与获益:纳入专家知识的贝叶斯网络模型(KROG 22-13)

Estimating the risk and benefit of radiation therapy in (y)pN1 stage breast cancer patients: A Bayesian network model incorporating expert knowledge (KROG 22-13).

作者信息

Jang Bum-Sup, Chun Seok-Joo, Choi Hyeon Seok, Chang Ji Hyun, Shin Kyung Hwan

机构信息

Department of Radiation Oncology, Seoul National University Hospital, Seoul, South Korea; Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, South Korea.

Department of Radiation Oncology, Seoul National University Hospital, Seoul, South Korea.

出版信息

Comput Methods Programs Biomed. 2024 Mar;245:108049. doi: 10.1016/j.cmpb.2024.108049. Epub 2024 Jan 24.

Abstract

BACKGROUND

We aimed to evaluate the risk and benefit of (y)pN1 breast cancer patients in a Bayesian network model.

METHOD

We developed a Bayesian network (BN) model comprising three parts: pretreatment, intervention, and risk/benefit. The pretreatment part consisted of clinical information from a tertiary medical center. The intervention part regarded the field of radiotherapy. The risk/benefit component encompasses radiotherapy (RT)-related side effects and effectiveness, including factors such as recurrence, cardiac toxicity, lymphedema, and radiation pneumonitis. These factors were evaluated in terms of disability weights and probabilities from a nationwide expert survey. The overall disease burden (ODB) was calculated as the sum of the probability multiplied by the disability weight. A higher value of ODB indicates a greater disease burden for the patient.

RESULTS

Among the 58 participants, a BN model utilizing discretization and clustering techniques revealed five distinct clusters. Overall, factors associated with breast reconstruction and RT exhibited high discrepancies (24-34 %), while RT-related side effects demonstrated low discrepancies (3-11 %) among the experts. When incorporating recurrence and RT-related side effects, the mean ODB of (y)pN1 patients was 0.258 (range, 0.244-0.337), with a higher tendency observed in triple-negative breast cancer (TNBC) or mastectomy cases. The ODB for TNBC patients undergoing mastectomy without postmastectomy radiotherapy was 0.327, whereas for non-TNBC patients undergoing breast conserving surgery with RT, the disease burden was 0.251. There was an increasing trend in ODB as the field of RT increased.

CONCLUSION

We developed a Bayesian network model based on an expert survey, which helps to understand treatment patterns and enables precise estimations of RT-related risk and benefit in (y)pN1 patients.

摘要

背景

我们旨在通过贝叶斯网络模型评估(y)pN1期乳腺癌患者的风险和获益。

方法

我们开发了一个包含三个部分的贝叶斯网络(BN)模型:预处理、干预以及风险/获益。预处理部分包含来自一家三级医疗中心的临床信息。干预部分涉及放射治疗领域。风险/获益部分涵盖放疗(RT)相关的副作用和疗效,包括复发、心脏毒性、淋巴水肿和放射性肺炎等因素。这些因素通过全国性专家调查的残疾权重和概率进行评估。总体疾病负担(ODB)通过概率乘以残疾权重的总和来计算。ODB值越高表明患者的疾病负担越大。

结果

在58名参与者中,一个利用离散化和聚类技术的BN模型揭示了五个不同的聚类。总体而言,与乳房重建和放疗相关的因素在专家之间显示出较高的差异(24 - 34%),而放疗相关的副作用在专家之间显示出较低的差异(3 - 11%)。当纳入复发和放疗相关的副作用时,(y)pN1患者的平均ODB为0.258(范围为0.244 - 0.337),在三阴性乳腺癌(TNBC)或乳房切除术病例中观察到更高的趋势。未进行乳房切除术后放疗的TNBC患者接受乳房切除术的ODB为0.327,而接受保乳手术加放疗的非TNBC患者的疾病负担为0.251。随着放疗范围的增加,ODB呈上升趋势。

结论

我们基于专家调查开发了一个贝叶斯网络模型,该模型有助于理解治疗模式,并能够精确估计(y)pN1患者放疗相关的风险和获益。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验