Suppr超能文献

利用傅里叶变换中红外光谱(FT-MIR)和化学计量学预测精酿啤酒的质量参数

The Prediction of Quality Parameters of Craft Beer with FT-MIR and Chemometrics.

作者信息

Meza-Márquez Ofelia Gabriela, Rodríguez-Híjar Andrés Ricardo, Gallardo-Velázquez Tzayhri, Osorio-Revilla Guillermo, Ramos-Monroy Oswaldo Arturo

机构信息

Departamento de Ingeniería Bioquímica, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas-Zacatenco, Av. Wilfrido Massieu S/N, Esq. Cda. Miguel Stampa, Col. Unidad Profesional Adolfo López Mateos, Zacatenco, Alcaldía Gustavo A. Madero, Ciudad de México C.P. 07738, Mexico.

Departamento de Biofísica, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas-Santo Tomás, Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, Alcaldía Miguel Hidalgo, Ciudad de México C.P. 11340, Mexico.

出版信息

Foods. 2024 Apr 11;13(8):1157. doi: 10.3390/foods13081157.

Abstract

Beer is one of the oldest and most known alcoholic beverages whose organoleptic characteristics are the attributes that the consumer seeks, which is why it is essential to ensure proper quality control of the final product. Fourier transform mid-infrared (FT-MIR) spectroscopy coupled with multivariate analysis can be an alternative to traditional methods to predict quality parameters in craft beer. This study aims to develop prediction models based on FT-MIR spectroscopy to simultaneously quantify quality parameters (color, specific gravity, alcohol volume, bitterness, turbidity, pH, and total acidity) in craft beer. Additionally, principal component analysis (PCA) was applied, and it was possible to classify craft beer samples according to their style. Partial least squares (PLS1) developed the best predictive model by obtaining higher Rc (0.9999) values and lower standard error of calibration (SEC: 0.01-0.11) and standard error of prediction (SEP: 0.01-0.14) values in comparison to the models developed with the other algorithms. Specific gravity could not be predicted due to the low variability in the values. Validation and prediction with external samples confirmed the predictive capacity of the developed model. By making a comparison to traditional techniques, FT-MIR coupled with multivariate analysis has a higher advantage, since it is rapid (approximately 6 min), efficient, cheap, and eco-friendly because it does not require the use of solvents or reagents, representing an alternative to simultaneously analyzing quality parameters in craft beer.

摘要

啤酒是最古老且最知名的酒精饮料之一,其感官特性是消费者所追求的特质,这就是为何确保最终产品的质量控制至关重要。傅里叶变换中红外(FT-MIR)光谱结合多元分析可作为预测精酿啤酒质量参数的传统方法的替代方案。本研究旨在开发基于FT-MIR光谱的预测模型,以同时量化精酿啤酒中的质量参数(颜色、比重、酒精度、苦味、浊度、pH值和总酸度)。此外,应用了主成分分析(PCA),并能够根据精酿啤酒的风格对样品进行分类。与使用其他算法开发的模型相比,偏最小二乘法(PLS1)通过获得更高的Rc(0.9999)值以及更低的校准标准误差(SEC:0.01 - 0.11)和预测标准误差(SEP:0.01 - 0.14)值,开发出了最佳预测模型。由于比重值的变异性较低,无法对其进行预测。使用外部样品进行验证和预测证实了所开发模型的预测能力。与传统技术相比,FT-MIR结合多元分析具有更高的优势,因为它快速(约6分钟)、高效、成本低且环保,因为它不需要使用溶剂或试剂,是同时分析精酿啤酒质量参数的一种替代方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3f8/11049648/5a7b0b332dbd/foods-13-01157-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验