Suppr超能文献

基于傅里叶变换中红外光谱和化学计量学的可可豆品种鉴定及化学成分预测

Identification of Variety and Prediction of Chemical Composition in Cocoa Beans ( L.) by FT-MIR Spectroscopy and Chemometrics.

作者信息

Castillejos-Mijangos Lucero Azusena, Meza-Márquez Ofelia Gabriela, Osorio-Revilla Guillermo, Jiménez-Martínez Cristian, Gallardo-Velázquez Tzayhri

机构信息

Departamento de Ingeniería Bioquímica, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas-Zacatenco, Av. Wilfrido Massieu s/n, Esq. Cda. Miguel Stampa, Col. Unidad Profesional Adolfo López Mateos, Zacatenco, Alcaldía Gustavo A. Madero, Ciudad de México C.P. 07738, Mexico.

Departamento de Biofísica, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas-Santo Tomás, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás, Alcaldía Miguel Hidalgo, Ciudad de México C.P. 11340, Mexico.

出版信息

Foods. 2023 Nov 16;12(22):4144. doi: 10.3390/foods12224144.

Abstract

Cocoa is rich in polyphenols and alkaloids that act as antioxidants, anticarcinogens, and anti-inflammatories. Analytical methods commonly used to determine the proximal chemical composition of cocoa, total phenols, and antioxidant capacity are laborious, costly, and destructive. It is important to develop fast, simple, and inexpensive methods to facilitate their evaluation. Chemometric models were developed to identify the variety and predict the chemical composition (moisture, protein, fat, ash, pH, acidity, and phenolic compounds) and antioxidant capacity (ABTS and DPPH) of three cocoa varieties. SIMCA model showed 99% reliability. Quantitative models were developed using the PLS algorithm and favorable statistical results were obtained for all models: 0.93 < Rc < 0.98 (Rc: calibration determination coefficient); 0.03 < SEC < 4.34 (SEC: standard error of calibration). Independent validation of the quantitative models confirmed their good predictive ability: 0.93 < Rv < 0.97 (Rv: validation determination coefficient); 0.04 < SEP < 3.59 (SEP: standard error of prediction); 0.08 < % error < 10.35). SIMCA model and quantitative models were applied to five external cocoa samples, obtaining their chemical composition using only 100 mg of sample in less than 15 min. FT-MIR spectroscopy coupled with chemometrics is a viable alternative to conventional methods for quality control of cocoa beans without using reagents, and with the minimum sample preparation and quantity.

摘要

可可富含多酚和生物碱,这些物质具有抗氧化、抗癌和抗炎作用。常用于测定可可的近似化学成分、总酚含量和抗氧化能力的分析方法既费力、成本高又具有破坏性。开发快速、简单且廉价的方法以促进对它们的评估很重要。建立了化学计量学模型来识别三个可可品种,并预测其化学成分(水分、蛋白质、脂肪、灰分、pH值、酸度和酚类化合物)以及抗氧化能力(ABTS和DPPH)。SIMCA模型显示出99%的可靠性。使用PLS算法建立了定量模型,所有模型均获得了良好的统计结果:0.93 < Rc < 0.98(Rc:校准决定系数);0.03 < SEC < 4.34(SEC:校准标准误差)。对定量模型的独立验证证实了它们良好的预测能力:0.93 < Rv < 0.97(Rv:验证决定系数);0.04 < SEP < 3.59(SEP:预测标准误差);0.08 < %误差 < 10.35)。将SIMCA模型和定量模型应用于五个外部可可样品,仅使用100毫克样品在不到15分钟内就获得了它们的化学成分。傅里叶变换红外光谱结合化学计量学是一种可行的替代传统方法的手段,可用于可可豆的质量控制,无需使用试剂,且样品制备最少、用量最少。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98f1/10669969/9c9cf48fce34/foods-12-04144-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验