Koizumi Yoshiaki, Nakajima Yuichi, Tanaka Yuya, Matsui Kosuke, Sakabe Masato, Maeda Kazuyuki, Sato Masayuki, Koshino Hiroyuki, Sato Soichi, Kimura Makoto, Takahashi-Ando Naoko
Graduate School of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe 350-8585, Japan.
Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
Int J Mol Sci. 2024 Apr 12;25(8):4288. doi: 10.3390/ijms25084288.
The trichothecene biosynthesis in begins with the cyclization of farnesyl pyrophosphate to trichodiene, followed by subsequent oxygenation to isotrichotriol. This initial bicyclic intermediate is further cyclized to isotrichodermol (ITDmol), a tricyclic precursor with a toxic trichothecene skeleton. Although the first cyclization and subsequent oxygenation are catalyzed by enzymes encoded by and , the second cyclization occurs non-enzymatically. Following ITDmol formation, the enzymes encoded by , , , and catalyze 3--acetylation, 15-hydroxylation, 15--acetylation, and A-ring oxygenation, respectively. In this study, we extensively analyzed the metabolites of the corresponding pathway-blocked mutants of . The disruption of these genes, except , led to the accumulation of tricyclic trichothecenes as the main products: ITDmol due to disruption; a mixture of isotrichodermin (ITD), 7-hydroxyisotrichodermin (7-HIT), and 8-hydroxyisotrichodermin (8-HIT) due to disruption; and a mixture of calonectrin and 3-deacetylcalonectrin due to disruption. However, the Δ mutant accumulated substantial amounts of bicyclic metabolites, isotrichotriol and trichotriol, in addition to tricyclic 15-deacetylcalonectrin (15-deCAL). The ΔΔ double gene disruptant transformed ITD into 7-HIT, 8-HIT, and 15-deCAL. The deletion of and overexpression of and trichothecene regulatory genes did not result in the accumulation of 15-deCAL in the transgenic strain. Thus, the absence of Tri3p and/or the presence of a small amount of 15-deCAL adversely affected the non-enzymatic second cyclization and C-15 hydroxylation steps.
单端孢霉烯生物合成始于法尼基焦磷酸环化生成单端孢霉烯,随后氧化生成异三醇。这个最初的双环中间体进一步环化生成异木霉烯醇(ITDmol),一种具有毒性单端孢霉烯骨架的三环前体。虽然第一次环化和随后的氧化由 和 编码的酶催化,但第二次环化是非酶促发生的。在ITDmol形成后,由 、 、 和 编码的酶分别催化3 - 乙酰化、15 - 羟基化、15 - 乙酰化和A环氧化。在本研究中,我们广泛分析了相应途径阻断突变体的代谢产物。除 外,这些 基因的破坏导致三环单端孢霉烯作为主要产物积累: 破坏导致ITDmol积累; 破坏导致异木霉毒素(ITD)、7 - 羟基异木霉毒素(7 - HIT)和8 - 羟基异木霉毒素(8 - HIT)的混合物积累; 破坏导致卡洛内酯和3 - 脱乙酰卡洛内酯的混合物积累。然而,Δ 突变体除了积累三环15 - 脱乙酰卡洛内酯(15 - deCAL)外,还积累了大量的双环代谢产物异三醇和三醇。ΔΔ双基因破坏体将ITD转化为7 - HIT、8 - HIT和15 - deCAL。 和 单端孢霉烯调控基因的缺失和过表达在转基因菌株中并未导致15 - deCAL的积累。因此,Tri3p的缺失和/或少量15 - deCAL的存在对非酶促第二次环化和C - 15羟基化步骤产生了不利影响。