Suppr超能文献

抗癌化合物与天然产物的个性化医疗及药物基因组学综述

Review of Personalized Medicine and Pharmacogenomics of Anti-Cancer Compounds and Natural Products.

作者信息

Zhou Yalan, Peng Siqi, Wang Huizhen, Cai Xinyin, Wang Qingzhong

机构信息

Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.

Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai 202103, China.

出版信息

Genes (Basel). 2024 Apr 8;15(4):468. doi: 10.3390/genes15040468.

Abstract

In recent years, the FDA has approved numerous anti-cancer drugs that are mutation-based for clinical use. These drugs have improved the precision of treatment and reduced adverse effects and side effects. Personalized therapy is a prominent and hot topic of current medicine and also represents the future direction of development. With the continuous advancements in gene sequencing and high-throughput screening, research and development strategies for personalized clinical drugs have developed rapidly. This review elaborates the recent personalized treatment strategies, which include artificial intelligence, multi-omics analysis, chemical proteomics, and computation-aided drug design. These technologies rely on the molecular classification of diseases, the global signaling network within organisms, and new models for all targets, which significantly support the development of personalized medicine. Meanwhile, we summarize chemical drugs, such as lorlatinib, osimertinib, and other natural products, that deliver personalized therapeutic effects based on genetic mutations. This review also highlights potential challenges in interpreting genetic mutations and combining drugs, while providing new ideas for the development of personalized medicine and pharmacogenomics in cancer study.

摘要

近年来,美国食品药品监督管理局(FDA)已批准多种基于突变的抗癌药物用于临床。这些药物提高了治疗的精准度,减少了不良反应和副作用。个性化治疗是当前医学领域的一个突出且热门的话题,也代表了未来的发展方向。随着基因测序和高通量筛选技术的不断进步,个性化临床药物的研发策略迅速发展。本综述阐述了近期的个性化治疗策略,包括人工智能、多组学分析、化学蛋白质组学和计算机辅助药物设计。这些技术依赖于疾病的分子分类、生物体内的全局信号网络以及所有靶点的新模型,极大地支持了个性化医学的发展。同时,我们总结了基于基因突变产生个性化治疗效果的化学药物,如洛拉替尼、奥希替尼等以及其他天然产物。本综述还强调了解读基因突变和联合用药方面的潜在挑战,同时为癌症研究中个性化医学和药物基因组学的发展提供新思路。

相似文献

2
Pharmacogenomics: Driving Personalized Medicine.药物基因组学:推动个性化医疗。
Pharmacol Rev. 2023 Jul;75(4):789-814. doi: 10.1124/pharmrev.122.000810. Epub 2023 Mar 16.

引用本文的文献

7
How pharmacology can aid in the diagnosis of mental disorders.药理学如何辅助精神障碍的诊断。
Naunyn Schmiedebergs Arch Pharmacol. 2025 Feb;398(2):1099-1110. doi: 10.1007/s00210-024-03413-z. Epub 2024 Sep 4.
9
A Systematic Review of Cardio-Metabolic Properties of L.对L.的心脏代谢特性的系统评价
Antioxidants (Basel). 2024 Jun 5;13(6):694. doi: 10.3390/antiox13060694.

本文引用的文献

1
Advances in artificial intelligence applications for ocular surface diseases diagnosis.人工智能在眼表疾病诊断中的应用进展。
Front Cell Dev Biol. 2022 Dec 20;10:1107689. doi: 10.3389/fcell.2022.1107689. eCollection 2022.
4
[Metabolome profiling in the study of aging processes].衰老过程研究中的代谢组学分析
Biomed Khim. 2022 Nov;68(5):321-338. doi: 10.18097/PBMC20226805321.
10
Lorlatinib as a treatment for ALK-positive lung cancer.洛拉替尼治疗间变性淋巴瘤激酶阳性肺癌。
Future Oncol. 2022 Aug;18(24):2745-2766. doi: 10.2217/fon-2022-0184. Epub 2022 Jul 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验