Suppr超能文献

细菌物种中翻译效率的差异选择塑造了翻译机制。

Differential Selection for Translation Efficiency Shapes Translation Machineries in Bacterial Species.

作者信息

Farookhi Heba, Xia Xuhua

机构信息

Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada.

Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.

出版信息

Microorganisms. 2024 Apr 10;12(4):768. doi: 10.3390/microorganisms12040768.

Abstract

Different bacterial species have dramatically different generation times, from 20-30 min in to about two weeks in . The translation machinery in a cell needs to synthesize all proteins for a new cell in each generation. The three subprocesses of translation, i.e., initiation, elongation, and termination, are expected to be under stronger selection pressure to optimize in short-generation bacteria (SGB) such as than in the long-generation . The initiation efficiency depends on the start codon decoded by the initiation tRNA, the optimal Shine-Dalgarno (SD) decoded by the anti-SD (aSD) sequence on small subunit rRNA, and the secondary structure that may embed the initiation signals and prevent them from being decoded. The elongation efficiency depends on the tRNA pool and codon usage. The termination efficiency in bacteria depends mainly on the nature of the stop codon and the nucleotide immediately downstream of the stop codon. By contrasting SGB with long-generation bacteria (LGB), we predict (1) SGB to have more ribosome RNA operons to produce ribosomes, and more tRNA genes for carrying amino acids to ribosomes, (2) SGB to have a higher percentage of genes using AUG as the start codon and UAA as the stop codon than LGB, (3) SGB to exhibit better codon and anticodon adaptation than LGB, and (4) SGB to have a weaker secondary structure near the translation initiation signals than LGB. These differences between SGB and LGB should be more pronounced in highly expressed genes than the rest of the genes. We present empirical evidence in support of these predictions.

摘要

不同细菌物种的代时差异极大,从大肠杆菌的20 - 30分钟到某些细菌的约两周不等。细胞中的翻译机制需要在每一代中为新细胞合成所有蛋白质。预计翻译的三个子过程,即起始、延伸和终止,在短代细菌(如大肠杆菌)中比在长代细菌中受到更强的选择压力以进行优化。起始效率取决于起始tRNA解码的起始密码子、小亚基rRNA上的反SD(aSD)序列解码的最佳Shine-Dalgarno(SD)序列,以及可能嵌入起始信号并阻止其被解码的二级结构。延伸效率取决于tRNA库和密码子使用情况。细菌中的终止效率主要取决于终止密码子的性质以及终止密码子下游紧邻的核苷酸。通过将短代细菌与长代细菌(LGB)进行对比,我们预测:(1)短代细菌有更多的核糖体RNA操纵子来产生核糖体,以及更多的tRNA基因用于将氨基酸转运到核糖体;(2)短代细菌中使用AUG作为起始密码子和UAA作为终止密码子的基因比例高于长代细菌;(3)短代细菌比长代细菌表现出更好的密码子和反密码子适应性;(4)短代细菌在翻译起始信号附近的二级结构比长代细菌更弱。短代细菌和长代细菌之间的这些差异在高表达基因中应比其他基因更为明显。我们提供了支持这些预测的实证证据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/888e/11052298/a29381d34f2a/microorganisms-12-00768-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验