Zhang Jingqi, Chen Zhiming, He Xiang, Liu Kuanhao, Hao Yue, Ma Mingzhi, Wang Weijiang, Dang Hua, Li Xiangnan
School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China.
UNISOC (Shanghai) Technology Co., Ltd., Shanghai 201203, China.
Micromachines (Basel). 2024 Apr 21;15(4):552. doi: 10.3390/mi15040552.
Physically unclonable functions (PUFs) are crucial for enhancing cybersecurity by providing unique, intrinsic identifiers for electronic devices, thus ensuring their authenticity and preventing unauthorized cloning. The SRAM-PUF, characterized by its simple structure and ease of implementation in various scenarios, has gained widespread usage. The soft-decision Reed-Muller (RM) code, an error correction code, is commonly employed in these designs. This paper introduces the design of an RM code soft-decision attack algorithm to reveal its potential security risks. To address this problem, we propose a soft-decision SRAM-PUF structure based on the elliptic curve digital signature algorithm (ECDSA). To improve the processing speed of the proposed secure SRAM-PUF, we propose a custom ECDSA scheme. Further, we also propose a universal architecture for the critical operations in ECDSA, elliptic curve scalar multiplication (ECSM), and elliptic curve double scalar multiplication (ECDSM) based on the differential addition chain (DAC). For ECSMs, iterations can be performed directly; for ECDSMs, a two-dimensional DAC is constructed through precomputation, followed by iterations. Moreover, due to the high similarity of ECSM and ECDSM data paths, this universal architecture saves hardware resources. Our design is implemented on a field-programmable gate array (FPGA) and an application-specific integrated circuit (ASIC) using a Xilinx Virtex-7 and an TSMC 40 nm process. Compared to existing research, our design exhibits a lower bit error rate (2.7×10-10) and better area-time performance (3902 slices, 6.615 μs ECDSM latency).
物理不可克隆函数(PUF)通过为电子设备提供独特的固有标识符来增强网络安全性,从而确保其真实性并防止未经授权的克隆,这一点至关重要。以其简单结构和易于在各种场景中实现为特点的SRAM-PUF已得到广泛应用。软判决里德-穆勒(RM)码作为一种纠错码,在这些设计中普遍使用。本文介绍了一种RM码软判决攻击算法的设计,以揭示其潜在的安全风险。为解决此问题,我们提出了一种基于椭圆曲线数字签名算法(ECDSA)的软判决SRAM-PUF结构。为提高所提出的安全SRAM-PUF的处理速度,我们提出了一种定制的ECDSA方案。此外,我们还基于差分加法链(DAC)为ECDSA、椭圆曲线标量乘法(ECSM)和椭圆曲线双标量乘法(ECDSM)中的关键操作提出了一种通用架构。对于ECSM,可以直接进行迭代;对于ECDSM,通过预计算构建二维DAC,然后进行迭代。而且,由于ECSM和ECDSM数据路径的高度相似性,这种通用架构节省了硬件资源。我们的设计使用Xilinx Virtex-7和台积电40纳米工艺在现场可编程门阵列(FPGA)和专用集成电路(ASIC)上实现。与现有研究相比,我们的设计具有更低的误码率(2.7×10-10)和更好的面积-时间性能(3902个切片,6.615微秒ECDSM延迟)。